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ABSTRACT

Seismic-wave attenuation is an important component of de-
scribing wave propagation. Certain regions, such as gas clouds
inside the earth, exert highly localized attenuation. In fact, the
anisotropic nature of the earth induces anisotropic attenuation be-
cause the quasi P-wave dispersion effect should be profound
along the symmetry direction. We have developed a 2D acoustic
eikonal equation governing the complex-valued traveltime of
quasi P-waves in attenuating, transversely isotropic media with a
vertical-symmetry axis (VTI). This equation is derived under the
assumption that the complex-valued traveltime of quasi P-waves
in attenuating VTI media are independent of the S-wave velocity
parameter υS0 in Thomsen’s notation and the S-wave attenuation
coefficient AS0 in Zhu and Tsvankin’s notation. We combine
perturbation theory and Shanks transform to develop practical ap-
proximations to the acoustic attenuating eikonal equation, capable
of admitting an analytical description of the attenuation in homo-
geneous media. For a horizontal-attenuating VTI layer, we also

derive the nonhyperbolic approximations for the real and imagi-
nary parts of the complex-valued reflection traveltime. These
equations reveal that (1) the quasi SV-wave velocity and the cor-
responding quasi SV-wave attenuation coefficient given as part of
Thomsen-typenotationbarelyaffect the rayvelocityand rayattenu-
ation of quasi P-waves in attenuatingVTImedia; (2) combining the
perturbation method and Shanks transform provides an accurate
analytic eikonal solution for homogeneous attenuating VTImedia;
(3) for a horizontal attenuatingVTI layerwithweak attenuation, the
real part of the complex-valued reflection traveltime may still be
describedby the existingnonhyperbolic approximationsdeveloped
for nonattenuating VTI media, and the imaginary part of the
complex-valued reflection traveltime still has the shape of nonhy-
perbolic curves. In addition, we have evaluated the possible exten-
sionof the proposed eikonal equation to realistic attenuatingmedia,
an alternative perturbation solution to the proposed eikonal equa-
tion, and the feasibility of applying the proposed nonhyperbolic
equation for the imaginary part of the complex-valued traveltime
to invert for interval attenuation parameters.

INTRODUCTION

Modeling the anelastic attenuating nature of the earth is becom-
ing important because our analysis of recorded data includes a
closer look at amplitude for inversion purposes. The anisotropic at-
tenuation of rocks is found from ultrasonic observation in the labo-
ratory (Tao and King, 1990; Best et al., 2007; Zhubayev et al., 2016)
and from a field seismic survey (Carter and Kendall, 2006; Clark
et al., 2009; Behura et al., 2012; Shekar and Tsvankin, 2012).
Because waves tend to exhibit anisotropic behavior as a result of
the natural thin layering of the earth, we would expect the same
waves to experience an anisotropic attenuation for the same reason.

Describing such behavior in an efficient manner via complex trav-
eltimes, and accordingly acquiring insights of its influence on seis-
mic data are important for proper wave propagation description and
inversion. The theory of wave propagation in attenuating media is
systematically presented in Borcherdt (2009) and Carcione (2015,
pp. 63–229).
The traveltime of body waves in an attenuating medium is com-

plex valued. The real part of the complex-valued traveltime corre-
sponds to the phase of the waves, whereas the imaginary part affects
the decay of the amplitude of the waves due to energy absorption.
The complex-valued traveltime of body waves in attenuating media
satisfies the complex eikonal equation (Červený and Pšenčík, 2009).
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As a fundamental equation, the eikonal equation plays an important
role in the forward modeling and inversion of traveltime in attenuat-
ing media.
Similar to the real ray-tracing method developed for elastic aniso-

tropic media, the complex ray tracing theory has been developed to
solve the complex-valued eikonal equation (Zhu and Chun, 1994;
Thomson, 1997; Chapman et al., 1999; Kravtsov et al., 1999; Ha-
nyga and Seredyňska, 2000; Amodei et al., 2006). The complex ray
theory is very accurate in solving the complex eikonal equation, and
it is applicable to anisotropy and attenuation of arbitrary strength
(Vavryčuk, 2010). Because the trajectory of a complex ray is de-
fined in complex space, the complex ray-tracing method requires
that the model parameters have to be extended into complex space,
which cannot be accomplished for realistic 3D velocity models
(Vavryčuk, 2012). As a result, it is difficult to implement complex
ray tracing in practice. For horizontally layered, attenuating media,
the traveltime of complex rays may be calculated by determining
the horizontal slowness component at the saddle point of the phase
function of the wavefield at the receiver (Hearn and Krebes, 1990a,
1990b; Krebes and Slawinski, 1991; Le et al., 1994). By assuming
that wave attenuation is weak and considering the imaginary parts
of complex-valued stiffness coefficients as the perturbation param-
eters, perturbation approaches have been developed to approxi-
mately calculate the complex-valued traveltime of body waves in
attenuating media (Gajewski and Pšenčík, 1992; Červený [2001],
pp. 542–548; Červený and Pšenčík, 2009; Klimeš and Klimeš,
2011). In perturbation approaches, the complex-valued traveltime is
expressed in terms of the perturbation of medium parameters from the
nonattenuating case to the attenuating case, and the complex-valued
traveltime is calculated along the real raypath in the nonattenuating
reference medium. Therefore, the perturbation approaches are simple
and fast compared with complex ray tracing. Despite being less
accurate for strongly attenuating media, perturbation approaches
are applicable to realistic models. As an alternative, Vavryčuk (2008,
2010, 2012) proposes a real ray-tracing method to solve the complex
eikonal equation for general attenuating anisotropic media. In this
method, the ray-tracing equations are reconstructed such that the ray-
path is entirely located in real space. Because this method needs
neither a real reference medium nor the continuation of medium
parameters defined in real space to complex space, it is accurate and
stable for strongly attenuating media.
In addition to ray-tracing methods, numerical techniques in-

volved in directly solving the eikonal equation after spatial discre-
tization, such as finite-difference (Vidale, 1988, 1990; van Trier and
Symes, 1991), fast-sweeping (Zhang et al., 2006; Luo and Qian,
2012), and fast-marching (Sethian, 1996; Sethian and Vladimirsky,
2001; Alkhalifah, 2011) methods, have been widely used in calcu-
lating traveltime for nonattenuating media. However, these methods
cannot be applied to attenuating media because they need to update
the traveltime in the grids along the direction of wavefront expansion
by selecting the minimum of traveltimes in a heap, but selecting the
minimum traveltime is not valid for complex-valued traveltimes in
attenuating media. Until now, the numerical eikonal solutions have
been limited to nonattenuating media.
The main goal of this paper is to develop an acoustic eikonal

equation for attenuating transversely isotropic media with a vertical
symmetry axis (VTI), in which the symmetry of the attenuation of
waves is the same as that of the phase velocity. Zhu and Tsvankin
(2006) propose a Thomsen-type notation (see equations A-6–A-10

in Appendix A) to describe the anisotropy of attenuation coefficient
for homogeneous plane waves in attenuating VTI media. They find
that the attenuation coefficient of the homogeneous plane quasi
P-wave is almost independent of the S-wave attenuation coefficient
AS0 in the Thomsen-type notation. For nonattenuating VTI media,
the influence of the parameter υS0 in Thomsen’s (1986) notation on
the traveltime and velocity of quasi P-waves is very weak and gen-
erally negligible (Alkhalifah, 1998, 2000). Alkhalifah (1998, 2000,
2003) proposes the acoustic approximation and derives the acoustic
eikonal and wave equations for nonattenuating VTI and orthorhom-
bic media. Besides Voigt notation and Zhu and Tsvankin’s (2006)
notation, it is worth mentioning that two different weak anisotropy-
attenuation notations are proposed by Vavryčuk (2009) and Raso-
lofosaon (2010) to describe the attenuation of waves in general at-
tenuating anisotropic media.
We will combine Thomsen’s (1986) notation and Zhu and

Tsvankin’s (2006) notation to fully parameterize an attenuating
VTI medium (see Appendix A). We will use the acoustic approxi-
mation to derive an acoustic eikonal equation for an attenuating VTI
medium. Compared with the exact eikonal equation of quasi P- and
SV-waves in an attenuating VTI medium, the acoustic eikonal equa-
tion includes fewer medium parameters because we will not con-
sider the S-wave velocity parameter υS0 in Thomsen’s (1986)
notation and the S-wave attenuation-coefficient parameter AS0 in
Zhu and Tsvankin’s (2006) notation. Similar to the nonattenuating
acoustic eikonal equations (Alkhalifah, 2000, 2003), the acoustic
eikonal equation proposed will provide a choice of modeling and
inversion of P-wave complex-valued traveltimes without prelimi-
narily knowing the S-wave parameters υS0 and AS0. However, we
must emphasize that the acoustic eikonal equation is not the exact
one that controls the quasi P-wave complex-valued traveltimes in
an attenuating VTI medium, although the first example in the
“Numerical examples” section will prove that the S-wave parame-
ters υS0 and AS0 barely affect the velocity and attenuation of P-wave
rays in a VTI model with strong attenuation anisotropy. The remain-
der of the paper is organized as follows: We start with the exact ei-
konal equation for attenuating VTI media. Then, we will consider the
acoustic assumption to approximate the exact eikonal equation, from
which we derive the acoustic eikonal equation for attenuating VTI
media. Furthermore, we present a perturbation method to approxi-
mately calculate the complex-valued traveltime from the acoustic ei-
konal equation for a homogeneous, attenuating VTI medium. Shanks
transform is implemented to accelerate the convergence of the trav-
eltime series with respect to the perturbation parameters. This treat-
ment to the acoustic eikonal equation, in nature, is almost the same
as the method proposed by Alkhalifah (2011) and Stovas and
Alkhalifah (2012) to solve the acoustic eikonal equations for nonat-
tenuating anisotropic media. From the approximate solution to the
acoustic attenuating eikonal equation, we also derive the approxima-
tions for the real and imaginary parts of the complex-valued travel-
time of quasi P-waves in a horizontal, homogeneous, attenuating
VTI layer.

THE EXACT EIKONAL EQUATION

According to the correspondence principle (Ben-Menahem and
Singh [1981], pp. 875; Carcione [2015], pp. 145–146), attenuation is
incorporated into the wavefield modeling by substituting the real-
valued frequency-independent stiffness coefficients with the com-
plex-valued frequency-dependent stiffness coefficients. For a general
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attenuating anisotropic medium, the frequency-domain stiffness co-
efficients cij in Voigt notation are expressed by (Červený and Pšen-
čík, 2005, 2009)

cij ¼ cRij − icIij; (1)

where the symbol i denotes the imaginary unit, cRij and cIij are real
valued, and cIij becomes zero for nonattenuating media; the minus
sign corresponds to the sign in the exponential factor expð−iωtÞ of
a time-harmonic wave under consideration (Červený and Pšenčík,
2009), where ω and t denote the angular frequency and time. For a
nonattenuating anisotropic medium, the matrix composed of cij is
positive definite, which is derived from the fact that strain energy is
positive (Fedorov [1968], pp. 12–18; Carcione [2015], pp. 5–7). For a
time-harmonic plane wavewith the exponential factor expð−iωtÞ, the
time-averaged strain energy and the dissipated energy are positive in
an attenuating anisotropic medium. This requires that matrices com-
posed of cRij and cIij are also positive definite (Červený and Pšen-
čík, 2006).
The zeroth-order time-harmonic ray solution to the elastodynamic

equation for an attenuating medium, in accordance with equation 1, is
expressed by (Gajewski and Pšenčík, 1992; Vavryčuk, 2007, 2010)

uðx; tÞ ¼ UðxÞ expð−iωðt − τðxÞÞÞ; (2)

where x denotes the position vector; t denotes the time; ω denotes the
angular frequency; u is the particle displacement vector; UðxÞ de-
notes the vector including factors — such as the spectrum of
the source wavelet, radiation pattern, geometric spreading, reflection,
and transmission — that affect the wave amplitude along the ray-
path; the direction of UðxÞ is identical to the polarization direction of
particle displacement; and τ ¼ τR þ iτI denotes the complex-
valued traveltime of rays.
The time-dependent exponential term in equation 2 is factorized

into

expð−iωðt − τðxÞÞÞ ¼ expð−iωðt − τRðxÞÞÞ expð−ωτIðxÞÞ:
(3)

Here, the factor expð−ωτIðxÞÞ describes the decay of the amplitude
due to energy absorption. Therefore, τI must always be positive for
positive angular frequencies, which corresponds to the stiffness co-
efficients defined in equation 1, and it must be negative for negative
angular frequencies, which corresponds to the stiffness coefficients
described by the complex conjugate of equation 1. In the case of
attenuating isotropic media, this requirement is identical to
the one that the quality factors of quasi P- and S-waves are odd
functions of frequency (Aki and Richards [2002], pp. 163–165).
Substitution of equation 2 into the elastodynamic equation for a

generally attenuating anisotropic medium leads to the Christoffel
equation (Vavryčuk, 2007). The Christoffel equation of quasi P-
and SV-waves in the [x, z] plane of an attenuating VTI medium
is given by�

a11p2
1þa55p2

3−1 ða13þa55Þp1p3

ða13þa55Þp1p3 a55p2
1þa33p2

3−1

��
g1
g3

�
¼0; (4)

where aij ¼ cij∕ρ denote the density-normalized stiffness coeffi-
cients, where cij is defined in equation 1; for an attenuating VTI
medium, the density-normalized stiffness coefficients aij are de-

scribed by the combination of Thomsen’s (1986) notation and Zhu
and Tsvankin’s (2006) notation (see Appendix A); p1 and p3 denote
the horizontal and vertical slowness components, respectively; g1
and g3 denote the horizontal and vertical polarization components,
respectively.
In the time-space domain, the phase slowness is expressed by the

spatial derivative of traveltime:

p1 ¼
∂τ
∂x

; p3 ¼
∂τ
∂z

: (5)

From equations 4 and 5, we obtain the 2D eikonal equation for
attenuating VTI media,�
a11

�
∂τ
∂x

�
2

þa55

�
∂τ
∂z

�
2

−1

��
a55

�
∂τ
∂x

�
2

þa33

�
∂τ
∂z

�
2

−1

�

−ða13þa55Þ2
�
∂τ
∂x

�
2
�
∂τ
∂z

�
2

¼0: (6)

This eikonal equation governs the P- and SV-wave traveltimes and
has the same form as in nonattenuating media. The 3D eikonal
equation may be easily obtained by replacing the square of the par-
tial derivative of τ with respect to x-axis by a sum of the square of
the partial derivatives of τ with respect to the x- and y-axes.

AN ACOUSTIC ATTENUATING EIKONAL
EQUATION

The parameter υS0 in Thomsen’s (1986) notation barely affects
the quasi P-wave velocity in elastic VTI media, which is called the
acoustic approximation (Alkhalifah, 1998, 2000). For attenuating
anisotropic media, the attenuation coefficient of plane quasi P-
waves is approximately independent of the S-wave attenuation
coefficient AS0 (Zhu and Tsvankin, 2006). Therefore, setting υS0 ¼
0 and AS0 ¼ 0 should have little influence on quasi P-wave com-
plex-valued traveltime in an attenuating VTI medium described by
the combination of Thomsen’s (1986) and Zhu and Tsvankin’s
(2006) notations, and it will lead to the acoustic attenuating VTI
medium. In fact, we only need to consider the acoustic approxima-
tion (υS0 ¼ 0) to obtain the acoustic attenuating eikonal equation,
without any assumption on AS0. This is because AS0 appears with
υS0 in the form AS0υS0∕ð1 − A2

S0Þ, when expressing the stiffness
coefficients in terms of parameters in Thomsen’s (1986) and
Zhu and Tsvankin’s (2006) notations. In this case, we further re-
place Thomsen’s (1986) notation by Alkhalifah’s (1998, 2000) no-
tation to describe an acoustic nonattenuating VTI reference because
Alkhalifah’s (1998, 2000) notation is more closely linked to the
P-wave velocity anisotropy. Alkhalifah’s (1998, 2000) notation in-
cludes three parameters: the P-wave vertical phase velocity υP0, the
quasi P-wave normal-moveout (NMO) velocity υn ¼ υP0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2δ

p
,

and the anellipticity parameter η ¼ ðε − δÞ∕ð1þ 2δÞ, where ε and δ
are Thomsen (1986) anisotropy parameters (see equations A-3 and
A-4 in Appendix A). The attenuation part of an acoustic attenuating
VTI medium is characterized by the following parameters in Zhu
and Tsvankin’s (2006) notation: the P-wave vertical attenuation
coefficient AP0, the fractional difference εQ between the horizontal
and vertical attenuation coefficients, and the second-order deriva-
tive δQ of attenuation coefficient with respect to the phase angle
of homogeneous plane quasi P-waves along the vertical direction
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(see equations A-6, A-8, and A-9 in Appendix A), where the phase
angle is measured from the phase propagation direction to the ver-
tical direction.
It follows that the 2D acoustic attenuating VTI eikonal equation

is given by

A

�
∂τ
∂x

�
2

þ B

�
∂τ
∂z

�
2

þ C

�
∂τ
∂x

�
2
�
∂τ
∂z

�
2

¼ 1; (7)

where coefficients A, B, and C are given by

A ¼ υ2nð1þ 2ηÞð1 − 2ikð1þ εQÞÞ; (8)

B ¼ υ2P0ð1 − 2ikÞ; (9)

C ¼ υ2P0
υ2n

ðð1 − 2ikÞυ2n − ikδQυ2P0Þ2

− υ2P0υ
2
nð1þ 2ηÞð1 − 2ikÞð1 − 2ikð1þ εQÞÞ; (10)

with

k ¼ AP0

1 − A2
P0

: (11)

The acoustic eikonal equation 7 implies that the complex-valued
traveltime of quasi P-waves in an attenuating VTI medium under
acoustic approximation is independent of S-wave parameters υS0
and AS0.
For weakly attenuating VTI media, we assume that the attenuation

coefficient AP0 ≪ 1. The linear approximations for equations 8–10
with respect to AP0 are given by

A ≈ υ2nð1þ 2ηÞð1 − 2iAP0ð1þ εQÞÞ; (12)

B ≈ υ2P0ð1 − 2iAP0Þ; (13)

C ≈ −2υ2P0υ2nηþ 2iAP0υ
2
P0ð4υ2nη − υ2P0δQ þ υ2nεQð1þ 2ηÞÞ:

(14)

Note that in the acoustic eikonal equation 7, the imaginary part of
the traveltime vanishes when AP0 ¼ 0, implying no attenuation, and
the traveltime is real valued. In this case, the acoustic eikonal equa-
tion fully reduces to the one for acoustic nonattenuating VTI media
(Alkhalifah, 1998, 2000).

THE ANALYTIC SOLUTION TO THE ACOUSTIC
EIKONAL EQUATION FOR HOMOGENEOUS

MEDIA

To gain some insight into the acoustic eikonal equation 7, let us
consider the special case of a homogeneous, attenuating VTI

medium to derive the approximate analytic solution. We assume
that the source is located at the origin of a 2D Cartesian coordinate
system for simplicity.
We define the vector l ¼ ðη; εQ; δQÞT to represent the trial sol-

ution to equation 7,

τ ¼ τ0 þ
X3
i¼1

τili þ
X3

i;j¼1;i≤j
τijlilj: (15)

Equation 15 describes a second-order approximation for the com-
plex-valued traveltime in terms of the anellipticity parameter and
the Thomsen-type attenuation-anisotropy parameters because they
are independent parameters and relatively small. Substitution of
equation 15 into equation 7 with equations 8–11 gives a second-
order expansion of the eikonal equation with respect to the anellip-
ticity parameter and Thomsen-type attenuation-anisotropy parame-
ters. Because all zeroth-, first-, and second-order coefficients in the
expansion must equal zero to satisfy the eikonal equation, we derive
the governing equations for the traveltime coefficients as follows:

• The zeroth-order traveltime coefficient τ0 satisfying

υ2n

�
∂τ0
∂x

�
2

þ υ2P0

�
∂τ0
∂z

�
2

¼ 1 − A2
P0

ð1 − iAP0Þ2
: (16)

• The first-order traveltime coefficients τi satisfying

υ2n
∂τ0
∂x

∂τi
∂x

þ υ2P0
∂τ0
∂z

∂τi
∂z

¼ fiðτ0Þ; i ¼ 1; 2; 3: (17)

• The second-order traveltime coefficients τij satisfying

υ2n
∂τ0
∂x

∂τij
∂x

þ υ2P0
∂τ0
∂z

∂τij
∂z

¼ fijðτ0; τ1; τ2; τ3Þ;
i; j ¼ 1; 2; 3; and i ≤ j: (18)

Equation 16 denotes the acoustic eikonal equation for attenuat-
ing, elliptically isotropic media. The expressions for the functions in
the right sides of equations 17 and 18 are shown in Appendix B. The
zeroth-, first-, and second-order traveltime coefficients can be suc-
cessively obtained from equations 16 to 18. The analytic solutions
to equations 16–18 are shown in Appendix C.
Once we obtain the zeroth-, first-, and second-order traveltime

coefficients, we may calculate the complex-valued traveltime from
equation 15. Applying Shanks transform (Bender and Orszag
[1978], pp. 369–375) to equation 15, the approximation of travel-
time is further improved

τ ¼ T0 þ
T2
1

T1 − T2

; (19)

with

T0 ¼ τ0; T1 ¼
X3
i¼1

τili; T2 ¼
X3

i;j¼1;i≤j
τijlilj: (20)
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Setting attenuation anisotropy parameters εQ ¼ δQ ¼ 0, equa-
tion 19 will reduce to the approximate traveltime for an attenuating
VTI medium with the isotropic attenuation coefficient. Setting all
perturbation parameters to zero (η ¼ εQ ¼ δQ ¼ 0), equation 19 will
reduce to the exact traveltime formula for an attenuating isotropic
medium. Setting AP0 ¼ 0, the traveltime from equation 19 will
become real valued, which corresponds to a nonattenuating VTI
medium. In this case, the analytic eikonal solution discussed here
will be exactly the same as the one presented in Alkhalifah (2011).

COMPLEX-VALUED TRAVELTIME FOR A
HORIZONTAL, ATTENUATING VTI LAYER

Let us now consider a horizontal, attenuating VTI layer. We de-
note the source-receiver offset by x, and the real and imaginary parts
of the reflection traveltime by tR and tI . We denote the zero-offset
two-way traveltime for the nonattenuating reference of the attenu-
ating VTI layer by t0 ¼ 2z∕υP0, where z is the thickness of the layer.
From the eikonal solution 19, we may obtain the two-way traveltime
as a function of the source-receiver offset. We also consider that
AP0 is very small in practice, which allows us to consider only the
first-order influence of AP0 on the traveltime. In this way, we obtain
the expansion for the complex-valued traveltime with respect to the
source-receiver offset. Furthermore, we separate the real and imagi-
nary parts of the expansion, which leads to the expansions of the real
and imaginary parts of the complex-valued traveltime. Finally, we
derive the fourth-order expansions of the squared real and imaginary
parts of the two-way reflection traveltime at the zero offset x ¼ 0,

t2R ≈ t20 þ
x2

υ2n
−
2ηx4

t20υ
4
n
; (21)

t2I ≈ A2
P0

�
t20 þ

x2

υ2Q
−
2ηQx4

t20υ
4
Q

�
; (22)

with

υQ ¼ υP0ð1þ 2δÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2δþ 2δQ

p ; (23)

ηQ¼−
δ2Q−2ð1þ2δÞδQð1þ6ηÞþ2ð1þ2δÞ2ðεQ−ηþ2εQηÞ

2ð1þ2δþ2δQÞ2
:

(24)

Equation 21 is the same as for acoustic nonattenuating VTI me-
dia. Equation 22 involves two new parameters, υQ and ηQ, which
have a similar meaning to the NMO velocity υn and the anellipticity
parameter η for the real part of the complex-valued traveltime. For
an acoustic VTI medium with isotropic attenuation coefficient
(εQ ¼ δQ ¼ 0), υQ and ηQ reduce to υn and η.
Combining equation 21 and the first-order approximation of the

horizontal ray velocity with respect to AP0, we derive the rational
approximation for the real part of the complex-valued traveltime,

t2R ≈ t20 þ
x2

υ2n
−

2ηx4

t20υ
4
nð1þ ξx2Þ ; (25)

with

ξ ¼ 2η

t20υ
4
n

�
1
υ2n
− 1

υ2h

� ; (26)

where υh ¼ υn
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2η

p
denotes the velocity of the horizontally

propagating quasi P-wave in a nonattenuating VTI medium.
The rational approximation given in equation 25 with equation 26

is the same as the existing rational approximation (Alkhalifah and
Tsvankin, 1995; Alkhalifah, 1997) for an acoustic nonattenuating
VTI layer. Equation 21 and equation 25 with equation 26 indicate
that the real part of the complex-valued traveltime is independent of
the attenuation coefficient and the attenuation-anisotropy parame-
ters in Zhu and Tsvankin’s (2006) notation under the weak attenu-
ation assumption (AP0 ≪ 1) and may be described by the existing
traveltime approximations for acoustic nonattenuating VTI media.
By analogy with the rational approximation 25, we derive the

rational approximation for the imaginary part of the complex-val-
ued traveltime,

t2I ≈ A2
P0

�
t20 þ

x2

υ2Q
−

2ηQx4

t20υ
4
Qð1þ ξQx2Þ

�
; (27)

with

ξQ ¼ 2ηQ

t20υ
4
Q

�
1
υ2Q
− 1

υ2hQ

� ; (28)

where υhQ denotes the inverse of the slope of the curve tI∕AP0 ver-
sus source-receiver offset x, as x → ∞; the limit case x → ∞ cor-
responds to the P-wave horizontal propagation.
From the acoustic eikonal equation 7, we derive the linearization

of υhQ with respect to AP0,

υhQ ¼ υn
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2η

p
1þ εQ

: (29)

If εQ becomes zero, then υhQ will be identical to the velocity of
the horizontally propagating quasi P-wave in a nonattenuating VTI
medium.
Equation 27 indicates that the imaginary part of the complex-val-

ued traveltime, also as a function of source-receiver offset, has a
nonhyperbolic shape similar to the traveltime for the acoustic, non-
attenuating VTI layer, and it is approximately characterized by five
parameters AP0, t0, υQ, ηQ, and εQ, where AP0 plays the role of a
scale factor, which means that the imaginary part of the complex-
valued traveltime normalized by AP0 is characterized by the remain-
ing four parameters; t0 describes the zero-offset two-way traveltime
in the nonattenuating reference (corresponding to the real parts of
complex-valued stiffness coefficients of an attenuating VTI medium);
υQ and ηQ play the roles of the attenuation NMO velocity and the
attenuation anellipticity parameter, similar to the roles of the NMO
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velocity υn and the anellipticity parameters η for acoustic nonattenu-
ating VTI media. The function εQ as an attenuation-anisotropy
parameter in the Thomsen-type notation, controls the large-offset
behavior of the imaginary part of the complex-valued traveltime nor-
malized by AP0. For the VTI model with isotropic attenuation coef-
ficient (εQ ¼ δQ ¼ 0), equation 27 reduces to

tI ≈ AP0tR; (30)

where tR is obtained from equation 25.

NUMERICAL EXAMPLES

First, we investigate the influence of the S-wave parameters υS0 and
AS0 on the P-wave ray velocity and ray attenuation because the com-
plex-valued traveltime is determined by the ray velocity and the ray
attenuation for an attenuating anisotropic medium. The ray velocity
Vray and the ray attenuation Aray are defined by (Vavryčuk, 2007)

Vray ¼
v2R þ v2I

vR
; (31)

Aray ¼ −
vI

v2R þ v2I
: (32)

Here, vR and vI denote the magnitudes of the real and imaginary
parts of the complex-valued energy-velocity vector (Vavryčuk, 2007,
2008), and the complex-valued energy-velocity vector is homo-
geneous, which means that the direction of the vector constructed
by the real part of the complex vector coincides with the direction
of the vector constructed by the imaginary part of the complex vector.
The method of calculating the exact complex-valued energy velocity
from a given ray direction for a general attenuating anisotropic
medium is summarized in Vavryčuk (2007). In this method, it is es-
sential to solve a system of nonlinear polynomial equations in the
unknown vector of phase slowness (Vavryčuk, 2006) for a given
ray direction. The complex-valued energy velocity is then calculated
from an exact and analytic formula in terms of the vector of phase
slowness.
Figure 1 shows that the influences of S-wave parameters υS0 and

AS0 on the P-wave ray velocity and ray attenuation are very small
for VTI media with strong attenuation and strong attenuation
anisotropy. This implies that ignoring the parameters υS0 and AS0

in the eikonal equation for attenuating VTI media almost does not
affect the P-wave complex-valued traveltime.
Second, we test the accuracy of the proposed approximations 15

and 19 for a homogeneous, acoustic attenuating VTI model. In this
case, the exact complex-valued traveltime equals the propagation
distance divided by the homogenous complex energy velocity (Vav-
ryčuk, 2007). As explained in the first example, the complex-valued
energy velocity is exactly calculated by the method discussed in
Vavryčuk (2007) for the ray direction formed by the source and
a spatial position in a homogeneous model. Figure 2 shows the real
and imaginary parts of the exact complex-valued traveltime. The at-
tenuation anisotropy (corresponding to the anisotropy of the imagi-
nary part of the complex-valued traveltime) is far stronger than the
wavefront anisotropy (corresponding to the anisotropy of the real part
of the complex-valued traveltime). Figures 3 and 4 show the absolute
errors in the real and imaginary parts of complex-valued traveltime
from approximations 15 and 19. The comparison between Figures 3
and 4 indicates that Shanks transform significantly improves the ac-
curacy of the approximation for the complex-valued traveltime.
Third, we investigate the reflection traveltime for a horizontal,

homogeneous, attenuating VTI layer. Figure 5 compares the real
parts of the complex-valued traveltimes from the exact solution
and the rational approximation 25. The exact solution is calculated
by the same method used in the first and second examples. The
rational approximation matches the exact solution for small to large
offset-depth ratios, which implies that we may still be able to use
existing methods such as velocity analysis (Alkhalifah, 1997) to
stably invert for the NMO velocity υn and the anellipticity param-
eter η from the P-wave surface data in attenuating VTI models.
Figure 6 compares the imaginary part of the complex-valued trav-
eltime from the exact method and the approximations. The second-
order Taylor expansion of the squared imaginary part of the com-
plex-valued traveltime (corresponding to the first two terms in the
right side of equation 22) is valid for small offset-depth ratios
(0 ≤ x∕z ≤ 0.8). The fourth-order Taylor expansion 22 slightly ex-
tends the valid maximum offset-depth ratio up to 1.1, but the accu-
racy of this expansion rapidly goes down afterward. The rational
approximation 27 is very accurate for offset-depth ratios of less than
1.7, and the curve of the imaginary part of the complex-valued trav-
eltime from this approximation has the same tendency with the in-
crease in offset-depth ratio as has the curve of the imaginary part of

Figure 1. (a) Ray velocity Vray and (b) ray attenuation Aray as func-
tions of the ray angle Θ, where the ray angle is measured from the
vertical axis to the direction of the homogeneous ray-velocity vector.
The gray solid lines correspond to the attenuating VTI model with the
parameters υP0 ¼ 3 km∕s, υS0 ¼ 1.5 km∕s, ε ¼ 0.3, δ ¼ 0.1, AP0 ¼
0.02498 (corresponding to Q33 ¼ 20, where Q33 denotes the quality
factor of P-waves propagating along the vertical axis), AS0 ¼
0.03330 (corresponding to Q55 ¼ 15, where Q55 denotes the quality
factor of S-waves propagating along the vertical axis), εQ ¼ −0.33,
and δQ ¼ 0.98. The black dashed lines correspond to the attenuating
VTI model with the same parameters except for υS0 ¼ 0 and
AS0 ¼ 0. The values of attenuation parameters AP0, AS0, εQ, and
δQ are from Zhu and Tsvankin (2006).
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the exact complex-valued traveltime. However, the rational approxi-
mation 27 becomes inaccurate when the offset-depth ratio is larger
than three. Figure 7 shows the influence of attenuation-anisotropy
parameters εQ and δQ on the imaginary part of the reflection
traveltime from attenuating VTI layers, in which the reflection trav-
eltime is calculated using the rational approximation 27. The attenu-
ation-anisotropy parameters εQ and δQ significantly affect the
imaginary part of reflection traveltime for a wide range of offset-
depth ratios (0.4 ≤ x∕z ≤ 2.8).

DISCUSSIONS

We considered the acoustic approximation (Alkhalifah, 1998,
2000) to derive an acoustic eikonal equation for attenuating VTI
media. Although the symmetry axis of the transversely isotropic
medium was limited to the vertical, the acoustic eikonal equation
for attenuating, transversely isotropic media with a tilted symmetry
axis may be obtained by a simple slowness-surface rotation. The
acoustic eikonal equation may also be extended to the case of at-
tenuating orthorhombic media. In this case, we will need the Thom-
sen-type notations (Tsvankin, 1997; Zhu and Tsvankin, 2007) and
the acoustic approximation (Alkhalifah, 2003).
The acoustic eikonal equation 7 is not limited to the constant at-

tenuation models. The stiffness coefficients in equation 1 are allowed

to be frequency dependent. As illustrated in Zhu and Tsvankin (2006),
the parameters in Thomsen (1986) and Zhu and Tsvankin (2006)
become frequency dependent if we assume a frequency-dependent
attenuating VTI model. In this case, solving the acoustic eikonal equa-
tion 7 will provide the traveltime as a function of frequency, the real
and imaginary parts of which correspond to the dispersion and fre-
quency-dependent attenuation due to energy absorption.
We have used the perturbation parameters defined in the vector

l ¼ ðη; εQ; δQÞT to describe the perturbation solution (equation 15)
to an attenuating acoustic eikonal equation for a homogeneous at-
tenuating VTI medium. In the perturbation method, the reference
medium is taken as an attenuating, elliptically isotropic medium.
As explained in the “Introduction” section, however, the numerical
method of directly solving the complex eikonal equation, using, for
example, finite difference methods, has not been developed even for
realistic models with isotropic attenuation. The existing methods
designed for nonattenuating media, such as the finite-difference
(Vidale, 1988, 1990; van Trier and Symes, 1991), fast-sweeping
(Zhang et al., 2006; Luo and Qian, 2012), and fast-marching (Se-
thian, 1996; Sethian and Vladimirsky, 2001; Alkhalifah, 2011)
methods, need to search the minimum traveltime in a heap, to guar-
antee that the traveltime is always updated along the direction of
wave front expansion. The traveltime from the complex eikonal
equation is generally complex valued. It is impossible to find the
minimum of complex-valued traveltimes. This means that numeri-
cal methods developed for nonattenuating media cannot be simply
modified to the case of attenuating media. In future work, we will

Figure 2. (a) Real and (b) imaginary parts of the exact complex-val-
ued traveltime for a homogeneous, attenuating VTI model. The
model parameters are υP0 ¼ 3 km∕s, υn ¼ 3.286 km∕s, η¼0.167,
AP0 ¼ 0.02498 (corresponding to Q33 ¼ 20, where Q33 denotes
the quality factor of P-waves propagating along the vertical axis),
εQ ¼ −0.33, and δQ ¼ 0.98. The values of attenuation parameters
AP0, εQ, and δQ are from Zhu and Tsvankin (2006).

Figure 3. Absolute errors in the (a) real and (b) imaginary parts of
the complex-valued traveltime from approximation 15 for a homo-
geneous, attenuating VTI medium. The model parameters are the
same as in Figure 2.
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study further the possibility of direct numerical solutions for the
acoustic eikonal equation 7 for realistic attenuating VTI models.
As an alternative, we may combine a perturbation method and

Shanks transform to numerically solve the eikonal equation 7 for
realistic models under the assumption of weak attenuation. We as-
sume that the attenuation coefficient AP0 is small enough, and we
use it as one of the perturbation parameters. The other perturbation
parameters are the same as the parameters that have been used in
this paper. Therefore, the new vector l composed of perturbation
parameters is given by l ¼ ðAP0; η; εQ; δQÞT. As a result, the per-

turbation expansion of the complex-valued traveltime with respect
to the new perturbation parameters may be described by using the
same method introduced in this paper. The zeroth-, first-, and sec-
ond-order traveltime coefficients are then controlled by the partial
differential equations similar to equations 16–18. In this case, the
zeroth-order traveltime coefficient corresponds to the eikonal equa-
tion for nonattenuating, elliptically isotropic media, which can be
solved by the fast-marching method (Alkhalifah, 2011), for exam-
ple. The first- and second-order traveltime coefficients are calcu-
lated by solving the corresponding first-order partial differential
equations in the order of updating traveltimes in the discretized
reference medium. Once all the traveltime coefficients are obtained,
we may use the Shanks transform to calculate the complex-valued
traveltime. The nonattenuating version of this algorithm is pre-
sented in Alkhalifah (2011).
We have derived a nonhyperbolic approximation (equation 27)

for the imaginary part of the complex-valued reflection traveltime.

Figure 4. Absolute errors in the (a) real and (b) imaginary parts of
the complex-valued traveltime from approximation 19 for a homo-
geneous, attenuating VTI medium. The model parameters are the
same as in Figure 2.

Figure 5. Real part of the complex-valued traveltime as a function
of the ratio between the source-receiver offset and the depth of
the reflector. The black solid line corresponds to the exact solution;
the gray dashed line corresponds to the rational approximation 25.
The layer thickness is z ¼ 1 km. The medium parameters are the
same as in Figure 2.

Figure 6. Imaginary part of the complex-valued traveltime as a func-
tion of the ratio between the source-receiver offset and the depth of
the reflector. The black solid line corresponds to the exact solution;
the gray solid line corresponds to the second-order approximation
described by the first two terms in the right side of equation 22;
the black dashed line corresponds to the fourth-order approximation
22; and the gray dashed line corresponds to the rational approxima-
tion 27. The model parameters are the same as in Figure 5.

Figure 7. Influence of attenuation-anisotropy parameters on the
imaginary part of the complex-valued traveltime from three sin-
gle-layer VTI models. The three models share the layer thickness z ¼
1 km and the medium parameters υP0 ¼ 3 km∕s, υn ¼ 3.286 km∕s,
η ¼ 0.167, AP0 ¼ 0.02498 (corresponding to Q33 ¼ 20, where Q33
denotes the quality factor of P-waves propagating along the vertical
axis). The black solid line corresponds to the VTI model with strong
attenuation anisotropy (εQ ¼ −0.33 and δQ ¼ 0.98). The black
dashed line corresponds to the VTI model with relatively weak at-
tenuation anisotropy (εQ ¼ −0.165 and δQ ¼ 0.49). The gray solid
line corresponds to the VTI model with isotropic attenuation coeffi-
cient (εQ ¼ 0 and δQ ¼ 0). The imaginary part of the complex-val-
ued traveltime is calculated using the rational approximation 27.
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Following Behura and Tsvankin (2009), this approximation can be
used in conjunction with layer stripping to invert for the parameters
AP0, υQ, ηQ, and εQ for a single horizontal layer. From the third
example in the “Numerical examples” section, we may expect that
(1) the parameters AP0 and υQ are estimated from small-offset data
(corresponding to the ratio of the source-receiver offset to the layer
thickness less than 0.8); (2) the parameter ηQ is estimated from
slightly larger offset data (corresponding to the ratio of the source-
receiver offset to the layer thickness approximately 1.0); (3) estimat-
ing the parameter εQ needs moderate-offset data (corresponding to
the ratio of the source-receiver offset to the layer thickness between
1.0 and 2.0); and (4) the parameter εQ may also be coarsely estimated
from the slope of the imaginary part of the complex-valued traveltime
at large offsets (corresponding to the ratio of the source-receiver off-
set to the layer thickness larger than 3.0).

CONCLUSION

The acoustic eikonal equation is derived based on the assumption
that the influence of the S-wave velocity parameter υS0 in Thom-
sen’s notation and the S-wave attenuation coefficient AS0 in Zhu
and Tsvankin’s notation on the complex-valued traveltime of quasi
P-waves in attenuating VTI media is negligible. Combining pertur-
bation theory and Shanks transform leads to an accurate analytic sol-
ution to the acoustic eikonal equation for homogeneous attenuating
VTI media. For a horizontal homogeneous VTI layer with strong at-
tenuation, the influence of the P-wave attenuation coefficient AP0 in
Zhu and Tsvankin’s notation on the real part of the complex-valued
traveltime is weak to the point that we may use the existing nonhy-
perbolic approximations such as the rational approximation to
describe the real part of the complex-valued traveltime; the imaginary
part of the complex-valued traveltime, as a function of source-
receiver offset, also has a nonhyperbolic shape, which is expressed
by the rational approximation.
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APPENDIX A

PARAMETERIZATION FOR ATTENUATING
VTI MEDIA

Here, we show the parameterization for an attenuating VTI
medium. As illustrated in equation 1, the stiffness coefficients of
an attenuating VTI medium are denoted by cij ¼ cRij − icIij. The Q
matrix is defined as Qij ¼ cRij∕cIij, where the summation over i and
j does not exist. Note that the definition for the Q matrix corre-
sponds to the stiffness coefficients cij ¼ cRij − icIij and traveltime
τ ¼ τR þ iτI , which is slightly different from that of Zhu and Tsvan-
kin (2006). Besides, the density of the medium is denoted by ρ.
We combine Thomsen’s (1986) notation and Zhu and Tsvankin’s
(2006) notation to parameterize an attenuating VTI medium. Thom-
sen’s (1986) notation is used to describe the wave velocities in the
nonattenuating reference of the attenuating VTI medium, in which

the nonattenuating reference corresponds to the real part of the stiff-
ness coefficients of the attenuating VTI medium. Zhu and Tsvan-
kin’s (2006) notation is used to describe attenuation coefficients of
homogeneous planes waves in an attenuating VTI medium. Com-
bining Thomsen’s (1986) notation and Zhu and Tsvankin’s (2006)
notation, an attenuating VTI medium is parameterized by the fol-
lowing parameters:

1) υP0: the velocity of the vertically propagating P-wave in the non-
attenuating VTI reference with stiffness coefficients cRij:

υP0 ≡

ffiffiffiffiffiffiffi
cR33
ρ

s
(A-1)

2) υS0: the velocity of the vertically propagating S-wave in the non-
attenuating VTI reference with stiffness coefficients cRij:

υS0 ≡

ffiffiffiffiffiffiffi
cR55
ρ

s
(A-2)

3) ε, δ, γ: the Thomsen (1986) parameters for the nonattenuating
VTI reference with stiffness coefficients cRij:

ε ≡
cR11 − cR33
2cR33

; (A-3)

δ ≡
ðcR13 þ cR55Þ2 − ðcR33 − cR55Þ2

2cR33ðcR33 − cR55Þ
; (A-4)

γ ≡
cR66 − cR55
2cR55

(A-5)

4) AP0: the P-wave attenuation coefficient in the symmetry
(vertical) direction:

AP0 ≡Q33

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

Q2
33

s
− 1

�
(A-6)

5) AS0: the S-wave attenuation coefficient in the symmetry (verti-
cal) direction:

AS0 ≡Q55

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

Q2
55

s
− 1

�
(A-7)

6) εQ, δQ, γQ: the Thomsen parameters for attenuation anisotropy:

εQ ≡
1

Q11
− 1

Q33

1
Q33

¼ Q33 −Q11

Q11

; (A-8)
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δQ ≡
Q33−Q55

Q55
cR55

ðcR
13
þcR

33
Þ2

ðcR
33
−cR

55
Þ þ 2 Q33−Q13

Q13
cR13ðcR13 þ cR55Þ

cR33ðcR33 − cR55Þ
;

(A-9)

γQ ≡
1

Q66
− 1

Q55

1
Q55

¼ Q55 −Q66

Q66

: (A-10)

Here, equations A-1–A-5 are from Thomsen (1986), and equa-
tions A-6–A-10 are from Zhu and Tsvankin (2006); εQ denotes
the fractional difference between the P-wave attenuation coeffi-
cients in the horizontal and vertical directions; δQ denotes the sec-
ond-order derivative of the P-wave attenuation coefficient at
the phase angle equal to zero, where the phase angle is measured
from the phase propagation direction to the symmetry (vertical)
direction; and γQ denotes the fractional difference between the
SH-wave attenuation coefficients in the horizontal and vertical
directions.

APPENDIX B

THE RIGHT SIDES OF EQUATIONS 17 AND 18

We show the expressions for the functions in the right sides of
equations 17 and 18.
The functions in the right sides of equation 17:

f1ðτ0Þ ¼ −υ2n
�
∂τ0
∂x

�
2

þ cυ2P0υ
2
n

�
∂τ0
∂x

�
2
�
∂τ0
∂z

�
2

; (B-1)

f2ðτ0Þ ¼ aυ2n

�
∂τ0
∂x

�
2

− bυ2P0υ
2
n

�
∂τ0
∂x

�
2
�
∂τ0
∂z

�
2

; (B-2)

f3ðτ0Þ ¼ bυ4P0

�
∂τ0
∂x

�
2
�
∂τ0
∂z

�
2

; (B-3)

with

a ¼ iAP0

ð1 − iAP0Þ2
; (B-4)

b ¼ iAP0

1 − A2
P0

; (B-5)

c ¼ ð1 − iAP0Þ2
1 − A2

P0

: (B-6)

The functions in right sides of equation 18:

f11ðτ0; τ1; τ2; τ3Þ ¼ −2υ2n
∂τ0
∂x

∂τ1
∂x

þ 2cυ2P0υ
2
n
∂τ0
∂x

�
∂τ0
∂z

�
2 ∂τ1
∂x

þ2cυ2P0υ
2
n

�
∂τ0
∂x

�
2 ∂τ0
∂z

∂τ1
∂z

−
1

2
υ2n

�
∂τ1
∂x

�
2

−
1

2
υ2P0

�
∂τ1
∂z

�
2

;

(B-7)

f22ðτ0; τ1; τ2; τ3Þ ¼ 2aυ2n
∂τ0
∂x

∂τ2
∂x

− 2bυ2P0υ
2
n
∂τ0
∂x

�
∂τ0
∂z

�
2 ∂τ2
∂x

−2bυ2P0υ2n
�
∂τ0
∂x

�
2 ∂τ0
∂z

∂τ2
∂z

−
1

2
υ2n

�
∂τ2
∂x

�
2

−
1

2
υ2P0

�
∂τ2
∂z

�
2

;

(B-8)

f33ðτ0;τ1;τ2;τ3Þ¼−
1

2
ab

υ6P0
υ2n

�
∂τ0
∂x

�
2
�
∂τ0
∂z

�
2

þ2bυ4P0
∂τ0
∂x

�
∂τ0
∂z

�
2∂τ3
∂x

þ2bυ4P0

�
∂τ0
∂x

�
2∂τ0
∂z

∂τ3
∂z

−
1

2
υ2n

�
∂τ3
∂x

�
2

−
1

2
υ2P0

�
∂τ3
∂z

�
2

; (B-9)

f12ðτ0;τ1;τ2;τ3Þ¼ 2aυ2n

�
∂τ0
∂x

�
2

þ2aυ2n
∂τ0
∂x

∂τ1
∂x

−2υ2n
∂τ0
∂x

∂τ2
∂x

−2bυ2P0υ2n

�
∂τ0
∂x

�
2
�
∂τ0
∂z

�
2

−2bυ2P0υ
2
n
∂τ0
∂x

�
∂τ0
∂z

�
2 ∂τ1
∂x

−2bυ2P0υ
2
n

�
∂τ0
∂x

�
2 ∂τ0
∂z

∂τ1
∂z

þ2cυ2P0υ
2
n
∂τ0
∂x

�
∂τ0
∂z

�
2 ∂τ2
∂x

þ2cυ2P0υ
2
n

�
∂τ0
∂x

�
2 ∂τ0
∂z

∂τ2
∂z

−υ2n
∂τ1
∂x

∂τ2
∂x

−υ2P0
∂τ1
∂z

∂τ2
∂z

; (B-10)

f13ðτ0; τ1; τ2; τ3Þ ¼ 2bυ4P0
∂τ0
∂x

�
∂τ0
∂z

�
2 ∂τ1
∂x

þ 2bυ4P0

�
∂τ0
∂x

�
2 ∂τ0
∂z

∂τ1
∂z

− 2υ2n
∂τ0
∂x

∂τ3
∂x

þ2cυ2P0υ
2
n
∂τ0
∂x

�
∂τ0
∂z

�
2 ∂τ3
∂x

þ 2cυ2P0υ
2
n

�
∂τ0
∂x

�
2 ∂τ0
∂z

∂τ3
∂z

− υ2n
∂τ1
∂x

∂τ3
∂x

− υ2P0
∂τ1
∂z

∂τ3
∂z

(B-11)
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f23ðτ0; τ1; τ2; τ3Þ ¼ 2aυ2n
∂τ0
∂x

∂τ3
∂x

þ 2bυ4P0
∂τ0
∂x

�
∂τ0
∂z

�
2 ∂τ2
∂x

þ 2bυ4P0

�
∂τ0
∂x

�
2 ∂τ0
∂z

∂τ2
∂z

−2bυ2P0υ2n
∂τ0
∂x

�
∂τ0
∂z

�
2 ∂τ3
∂x

− 2bυ2P0υ
2
n

�
∂τ0
∂x

�
2 ∂τ0
∂z

∂τ3
∂z

− υ2n
∂τ2
∂x

∂τ3
∂x

− υ2P0
∂τ2
∂z

∂τ3
∂z

; (B-12)

where a, b, and c are given by equations B-4–B-6.

APPENDIX C

THE TRAVELTIME COEFFICIENTS FOR A
HOMOGENEOUS ATTENUATING VTI MEDIUM

We show the analytic solutions to equations 16–18 for a homo-
geneous attenuating VTI medium.
The solution to equation 16 is given by

τ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − A2

P0Þðυ2P0x2 þ υ2nz2Þ
p

ð1 − iAP0ÞυnυP0
: (C-1)

The solutions to equation 17 are as follows:

τ1 ¼ −
x4υ3P0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A2

P0

p
υnð1 − iAP0Þðυ2P0x2 þ υ2nz2Þ3∕2

; (C-2)

τ2 ¼
iAP0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A2

P0

p
υ3P0x

4

ð1 − iAP0Þ3υnðυ2P0x2 þ υ2nz2Þ3∕2
; (C-3)

τ3 ¼
iAP0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A2

P0

p
υ3P0x

2z2

ð1 − iAP0Þ3υnðυ2P0x2 þ υ2nz2Þ3∕2
: (C-4)

The solutions to equation 18 are as follows:

τ11 ¼
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A2

P0

p
υ5P0x

6ðυ2P0x2 þ 4υ2nz2Þ
2ð1 − iAP0Þυnðυ2P0x2 þ υ2nz2Þ7∕2

; (C-5)

τ22 ¼ −
3A2

P0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A2

P0

p
υ5P0x

6ðυ2P0x2 þ 4υ2nz2Þ
2ð1 − iAP0Þ5υnðυ2P0x2 þ υ2nz2Þ7∕2

; (C-6)

τ33 ¼ −
3A2

P0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A2

P0

p
υ5P0x

2z2ðυ4P0x4 − υ2P0υ
2
nx2z2 þ υ4nz4Þ

2ð1 − iAP0Þ5υ3nðυ2P0x2 þ υ2nz2Þ7∕2
;

(C-7)

τ12 ¼ −
iAP0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A2

P0

p
υ3P0x

4ðυ4P0x4 þ 8υ2P0υ
2
nx2z2 − 2υ4nz4Þ

ð1 − iAP0Þ3υnðυ2P0x2 þ υ2nz2Þ7∕2
;

(C-8)

τ13 ¼
3iAP0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A2

P0

p
υ5P0x

4z2ðυ2P0x2 − 2υ2nz2Þ
ð1 − iAP0Þ3υnðυ2P0x2 þ υ2nz2Þ7∕2

; (C-9)

τ23 ¼
3A2

P0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A2

P0

p
υ5P0x

4z2ðυ2P0x2 − 2υ2nz2Þ
ð1 − iAP0Þ5υnðυ2P0x2 þ υ2nz2Þ7∕2

: (C-10)
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