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An acoustic eikonal equation for attenuating orthorhombic media
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ABSTRACT

Attenuating orthorhombic models are often used to de-
scribe the azimuthal variation of the seismic wave velocity
and attenuation in finely layered hydrocarbon reservoirs
with vertical fractures. In addition to the P-wave related
medium parameters, S-wave parameters are also present
in the complex eikonal equation needed to describe the
P-wave complex-valued traveltime in an attenuating ortho-
rhombic medium, which increases the complexity of using
the P-wave traveltime to invert for the medium parameters
in practice. We have used the acoustic assumption to derive
an acoustic eikonal equation that approximately governs
the complex-valued traveltime of P-waves in an attenuating
orthorhombic medium. For a homogeneous attenuating
orthorhombic media, we solve the eikonal equation using
a combination of the perturbation method and Shanks
transform. For a horizontal attenuating orthorhombic layer,
the real and imaginary parts of the complex-valued reflec-
tion traveltime have nonhyperbolic behaviors in terms of
the source-receiver offset. Similar to the roles of normal
moveout (NMO) velocity and anellipticity, the attenuation
NMO velocity and the attenuation anellipticity characterize
the variation of the imaginary part of the complex-valued
reflection traveltime around zero source-receiver offset.

INTRODUCTION

The attenuation of seismic wave propagation in reservoir rocks
is closely linked to permeability, fluid content, and saturation (e.g.,
Winkler and Nur, 1982; Berryman, 1988; Batzle et al., 2006). The
effective property of fluid-saturated reservoirs with aligned frac-
tures exhibits velocity and attenuation anisotropy together, which

may be described by a frequency-dependent attenuating anisotropic
medium (e.g., Chapman, 2003, 2009; Jakobsen and Chapman,
2009). Laboratory and field observations have revealed that aniso-
tropic attenuation is a common phenomenon for wave propagation
in reservoir rocks (Tao and King, 1990; Carter and Kendall, 2006;
Best et al., 2007; Clark et al., 2009; Behura et al., 2012; Shekar and
Tsvankin, 2012; Zhubayev et al., 2016). The theory of wave propa-
gation in attenuating media is systematically presented by Borch-
erdt (2009) and Carcione (2015, pp. 63-229).

Attenuating orthorhombic models may be used to describe the
azimuthal variation of velocity and attenuation in finely layered
hydrocarbon reservoirs with vertical fractures. Similar to an elastic
orthorhombic medium, an attenuating orthorhombic medium in-
cludes three orthogonal symmetry planes. Besides, the symmetry of
the imaginary part of the complex-valued stiffness matrix coincides
with that of the real part of this matrix (Zhu and Tsvankin, 2007). In
each of the symmetry planes, the homogeneous plane-wave propa-
gation exhibits transverse isotropy in the aspects of phase velocity
and attenuation coefficients, in which the term “homogeneous”
means that the real and imaginary parts of a complex-valued wave
vector are parallel to each other (e.g., Cerveny and Psencik, 2005a,
2005b, 2006; Zhu and Tsvankin, 2006, 2007). An attenuating
orthorhombic media may be parameterized by a combination of
Tsvankin’s (1997) notation and Zhu and Tsvankin’s (2007) nota-
tion (Appendix A), where Tsvankin’s (1997) notation describes
the velocities of the homogeneous plane waves in a nonattenuating
background of an attenuating anisotropic medium, which corre-
sponds to the real part of the stiffness coefficients; Zhu and Tsvan-
kin’s (2007) notation describes the attenuation coefficients of
homogeneous plane waves in attenuating orthorhombic media. In
addition to Zhu and Tsvankin’s (2007) notation, Vavrycuk (2009)
and Rasolofosaon (2010) propose two different weak anisotropy-
attenuation notations to describe the attenuation of waves in gen-
erally attenuating anisotropic media.

The time-harmonic wave traveltime in attenuating media is gen-
erally complex valued. The complex-valued traveltime is governed
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by the complex eikonal equation, the form of which is similar to the
real eikonal equation in nonattenuating media (Cerveny and PSen-
¢ik, 2009). From the point of view of ray theory, the real and imagi-
nary parts of the complex-valued traveltime of a time-harmonic ray
control the phase and the attenuation due to energy absorption in an
attenuating anisotropic medium (e.g., Gajewski and PSencik, 1992;
Vavrycuk, 2007, 2010), respectively. The suggested approaches to
invert for the quality factor, such as the spectral-ratio method (e.g.,
Dasgupta and Clark, 1998) and the frequency-shift method (e.g.,
Quan and Harris, 1997), naturally use the imaginary part of the
complex-valued traveltime. Similar techniques have been applied
to estimate the attenuation parameters of an attenuating anisotropic
medium (Zhu et al., 2007; Behura and Tsvankin, 2009; Clark et al.,
2009; Shekar and Tsvankin, 2011, 2012; Behura et al., 2012;
Vavrycuk, 2015; Zhubayev et al., 2016). In addition to energy ab-
sorption in attenuating media, it must be emphasized that other fac-
tors such as geometric spreading, reflection and transmission, and
scattering by small-scale heterogeneities can also induce wave-
amplitude attenuation.

Although the complex eikonal equation is formally similar to the
real eikonal equation, it is very difficult to find the exact solution to
the complex eikonal equation for realistic attenuating models.
The complex ray-tracing method (Zhu and Chun, 1994; Thomson,
1997; Chapman et al., 1999; Kravtsov et al., 1999; Hanyga and
Seredyniska, 2000; Amodei et al., 2006), which is aimed to exactly
calculate the complex-valued traveltime, cannot be easily imple-
mented in attenuating models with complicated velocity and attenu-
ation structures because this method requires that the medium
parameters defined in real space are continued to complex space,
which cannot be accomplished for realistic models. For horizontally
layered, attenuating media, the complex ray method may be sim-
plified to determine the horizontal slowness component at the sad-
dle point of the phase function of the wavefield at the receiver
(Hearn and Krebes, 1990a, 1990b; Krebes and Slawinski, 1991;
Le etal., 1994). On the other hand, approximate methods have been
developed to solve the complex eikonal equation. These methods
include real ray tracing (Vavrycuk, 2008, 2010, 2012) and real
ray tracing based on model perturbation (e.g., Moczo et al.,
1987; Gajewski and PSencik, 1992; Cerven}’/, 2001, pp. 542-
548; Cerveny and PSencik, 2009; Klime§ and Klimes, 2011).

In this paper, we propose an acoustic eikonal equation approxi-
mately governing the complex-valued traveltimes of P-waves in
attenuating orthorhombic media. We extend the acoustic eikonal
equation developed for attenuating transversely isotropic media with
a vertical symmetry axis (VTI) by Hao and Alkhalifah (2017) to the
attenuating orthorhombic case. The acoustic eikonal equation for at-
tenuating orthorhombic media is derived by considering the acoustic
assumption that the S-wave velocity parameter vgy in Tsvankin’s
(1997) barely affects the P-wave velocity in an elastic orthorhombic
medium (Alkhalifah, 2003) and the S-wave attenuation-coefficient
parameter Ag, in Zhu and Tsvankin’s (2007) notation barely affects
the attenuation coefficient of homogeneous P-waves in an attenuating
orthorhombic medium.

We present a perturbation method to approximately calculate the
complex-valued traveltime from the acoustic eikonal equation for
homogeneous attenuating orthorhombic media. The Shanks trans-
form is also considered to accelerate the convergence of the travel-
time series with respect to the perturbation parameters. A similar
method is adopted by Hao and Alkhalifah (2017) to solve the

acoustic eikonal equations for homogeneous attenuating VTI media.
As mentioned by Hao and Alkhalifah (2017), numerical methods,
such as finite-difference methods (e.g., Vidale, 1988, 1990; van Trier
and Symes, 1991), fast-sweeping methods (e.g., Tsai et al., 2003;
Zhang et al., 2006; Luo and Qian, 2012; Waheed et al., 2015),
and fast-marching methods (e.g., Sethian, 1996; Sethian and Vladi-
mirsky, 2001; Alkhalifah, 2011), can be used in calculating the trav-
eltime only for nonattenuating media until now. We will not attempt
to discuss the numerical scheme to directly solve the acoustic eikonal
equation for heterogeneous attenuating orthorhombic medium in this
paper. This issue will be addressed in a future paper.

The rest of this paper is organized as follows: We start with the
exact eikonal equation for attenuating orthorhombic media. We then
combine Tsvankin’s (1997) notation and Zhu and Tsvankin’s (2007)
notation and consider the acoustic assumption to approximate the
exact eikonal equation, from which we derive the acoustic eikonal
equation for attenuating orthorhombic media. We next combine per-
turbation theory and the Shanks transform to derive the analytic ei-
konal solution for a homogeneous attenuating orthorhombic medium.
For an orthorhombic layer with weak attenuation, we subsequently
derive the series expansions for the real and imaginary parts of the
reflection traveltime in terms of the source-receiver offset. Numerical
examples are shown to verify the acoustic assumption, to investigate
the accuracy of the analytic eikonal solution, to analyze the sensitivity
of the real and imaginary parts of the traveltime to the perturbation
parameters, and to investigate the reflection traveltime from an at-
tenuating orthorhombic layer. We finally present the conclusions.

It is worth noting that we adopt the special notation originally used
in Klime§ (2002) to denote the first-order spatial derivatives of the
traveltime throughout the paper: The first-order derivatives of the trav-
eltime with respect to the spatial coordinates x, y, and z are denoted by
putting a comma followed by the considered spatial coordinate in the
subscript. For example, 7, and 7, , denote the first-order partial deriv-
atives of the traveltimes = and 7, with respect to x, respectively.

THE EXACT EIKONAL EQUATION

For a generally attenuating anisotropic medium, the density-nor-
malized complex-valued stiffness coefficients in the frequency do-
main are denoted by a;; = af — ia]; in Voigt notation, in which the
minus sign corresponds to the sign in the exponential factor
exp(—iwt) of a time-harmonic wave under consideration (Cerveny
and PSencik, 2009), where @ and ¢ denote the angular frequency and
time; the matrices constructed by ag and a{j are positive definite
(Cerveny and PSencik, 2006); symbol “i”” denotes the imaginary
unit. According to the correspondence principle (Ben-Menahem
and Singh, 1981, p. 875; Carcione, 2015, pp. 145-146), the attenu-
ating anisotropic eikonal equation is similar in form to the nonat-
tenuating anisotropic eikonal equation, except that the stiffness
coefficients are replaced by the complex-valued stiffness coeffi-
cients. By referring to Cerveny (2001, pp. 62-64), the eikonal equa-
tion for attenuating orthorhombic media reads

(a3 +ass)r, 7.
(a3 +ag)t,T, =0,

2 2
AassT +a441?). +azrs—1

(“|z+“$5)‘f.x‘[.y

>

66T+ anTh +agti—1
(a3 +ag)t 7.

(a1n+age)7.,7,

a1|1_2)+a6(,1_2),+a55r_22—l
det
(a3 +ass)r, 7.

1)

where 7, 7, and 7, denote the partial derivative of the complex-
valued traveltime 7 with respect to x, y, and z. The eikonal equation 1
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governs the traveltime of P-, S1-, and S2-waves in an attenuating
orthorhombic medium with the symmetry planes orthogonal to the
Cartesian coordinate axes.

In addition to using stiffness coefficients in Voigt notation, an
attenuating orthorhombic medium can also be fully described by
the combination of Tsvankin’s (1997) notation and Zhu and Tsvan-
kin’s (2007) notation. The density-normalized stiftness coefficients
in equation 1 can be expressed in terms of the parameters in Tsvan-
kin’s (1997) notation and Zhu and Tsvankin’s (2007) notation.

AN ACOUSTIC ATTENUATING EIKONAL
EQUATION

The S-wave velocity parameter vg, in Tsvankin’s (1997) notation
barely affects the P-wave velocity in elastic orthorhombic media,
which is called the acoustic assumption for orthorhombic media
(Alkhalifah, 2003). For attenuating orthorhombic media, the attenu-
ation coefficient of a homogeneous plane P-wave is almost indepen-
dent of the S-wave normalized attenuation coefficient Agy in Zhu
and Tsvankin’s (2007) notation. Therefore, ignoring parameters
vgo and Ago should have little effect on the P-wave traveltime in
attenuating orthorhombic media.

By analogy with the derivation of acoustic eikonal equation for
attenuating VTI media (Hao and Alkhalifah, 2017), we first express
the stiffness coefficients in equation 1 using Tsvankin’s (1997) and
Zhu and Tsvankin’s (2007) notations (see Appendix A) and then set
vsp equal to zero. As explained in Hao and Alkhalifah (2017), we do
not need to set any assumptions on Ag, because the parameter Ag
vanishes in equation 2 when setting vg to zero. Furthermore, we use
the modified Alkhalifah’s (2003) notation (Hao et al., 2016) instead
of Tsvankin’s (1997) notation to describe the nonattenuating refer-
ence of the attenuating orthorhombic media under the acoustic
assumption. As shown in Appendix A, the parameters in the modified
Alkhalifah’s (2003) notation include P-wave velocity vpy, NMO
velocities v,; and v,,, and three anellipticity parameters 7, 7,,
and 773, where the subscripts 1, 2, and 3 correspond to the [y, z],
[x, z], and [x, y] symmetry planes of an orthorhombic medium. It
follows that the acoustic eikonal equation for attenuating orthorhom-
bic media is given by

2
anti—1 anT T, aA3T 4T,
2 —
det alzT’xT.y 6122’[’), -1 6123‘[,),1'& = O, (2)

13T 57T ; aTyT, 4337, — 1

where a;; are expressed by

an = 2 (1 = 2ik(1 + egy))(1 + 215). G)

ap = Unll)an(l - 21k(1 + €Q2))
(1 + 21,)?

- lk(SQg(l + €Q2) > 15 s (4)

. . U}%O
ap;y = UPOUnZ(l - 2lk) - lkéQZTz N (5)
ay = va (1 = 2ik(1 +eg1)) (1 +2m), (6)

3
. . U
ays = UpgU (1 — 2ik) — kS, U—PO @)
nl
aszy = 1)12)0(1 - ZZk), (8)

with

k

Avo 52\/(1+2m)(1+2ﬂz). o

C1-A3)] 1+ 25

Equation 2 has the similar form as the nonattenuating orthorhombic
eikonal equation. Setting Ap, equal to zero, equation 2 reduces to the
acoustic nonattenuating orthorhombic eikonal equation shown in
Stovas et al. (2016).

Setting 7, equal to zero, the eikonal equation 2 reduces to the 2D
acoustic eikonal equation for an attenuating VTI medium

Ah + B7% + Codl = 1, (10)

with
A =02(1=2ik(1+¢€p))(1 +27), (11)
B = v} (1 - 2ik), (12)

2
c= % (1 = 2ik)02 — ikd yv3,)?

— 0302 (1 = 2ik) (1 = 2ik(1 + £0))(1 +21),  (13)

where v, denotes the NMO velocity, # denotes the anellipticity
parameter, and ¢ and J, are the attenuation-anisotropy parameters.
Equation 10 is originally presented in Hao and Alkhalifah (2017).

AN APPROXIMATE SOLUTION TO THE
ACOUSTIC EIKONAL EQUATION

Let us now derive the analytic solution to the acoustic eikonal
equation for homogeneous attenuating orthorhombic media. A
perturbation method is adopted to solve this eikonal equation. For
the nonattenuating orthorhombic eikonal equation, similar methods
can be found in Masmoudi and Alkhalifah (2016) and Stovas
et al. (2016). We define the vector of the perturbation parameters,
€ = (11.m2. 13, €01 601, €02, 802, 893) 7, to represent the trial solu-
tion to equation 2:

8 8
T:T0+Zfifi+ Z Tijfifjv (14)
i=1

i j=Li<j

where 7y, 7;, and 7;; denote the zero-, first- and second-order trav-
eltime coefficients, respectively.

Equation 14 describes the second-order approximation for the
complex-valued traveltime in terms of the anellipticity parameters
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and the Thomsen-type attenuation anisotropy parameters because
they are considered to be independent parameters and are relatively
small. It is predictable that equation 14 will become less accurate if
the perturbation parameters are relatively large.

Substitution of equation 14 into the Taylor series expansions
equation 2 with respect to the perturbation parameters leads to the
governing equations for the zero-, first-, and second-order coeffi-
cients. The derivation of the governing equations is shown in
Appendix B. These governing equations are as follows:

*  The equation for the zero-order traveltime coefficient 7, is

1
1 —2ik’

2

2 2 2 2 2 _
Vo T 051 To,y + OpoTo, = (15)

e The equation for the first-order traveltime coefficients z; is

2 2 2 _
Ui T0xTix + V1 ToyTiy T UppT0,:%iz = fi(TO)s

i=1,2,3,...,8. (16)
»  The equation for the second order traveltime coefficients z;; is

2 2 2 _
UinToxTijx T 05170,y Tijy + UpoT0.:Tijz = fij(To» 7, Tj)’

i,j=1,2,3,...,8and i <. amn

The right sides of equations 16 and 17 are shown in Appendix B.
The zero-, first-, and second-order traveltime coefficients can be
successively calculated from equations 15 to 17. Equation 15 de-
notes the acoustic eikonal equation for attenuating elliptically aniso-
tropic media. Once the zero-order traveltime is calculated from
equation 15, equations 16 and 17 may be successively solved be-
cause they are the first-order linear partial differential equations.
The explicit expressions for the zero-, first-, and second-order trav-
eltime coefficients are shown in Appendix C. As a result, we may
calculate the complex-valued traveltime from equation 14. The ac-
curacy of the traveltime equation 14 is improved using the Shanks
transform (Bender and Orszag, 1978, pp. 369-375):

2

Tl
T:T0+

—_— 18
T -T, (18)

with

8 8
Ty=710,T, = ZTifiv T, = Z ;0. (19)

i=1 i,j=1i<j

Complex-valued traveltime for a horizontal, attenuating
orthorhombic layer

We consider a horizontal orthorhombic layer with weak attenua-
tion. From the approximate one-way complex-valued traveltime sol-
ution 18, we expand the reflection traveltime with respect to the
normalized attenuation coefficient Apy of Zhu and Tsvankin’s (2007)
notation up to first order, and with respect to the radial source-
receiver offset up to fourth order. This operation may allow us to
separately approximate the real and imaginary parts of the complex-
valued reflection traveltime. The fourth-order series expansion for the
real part of the complex-valued traveltime is given by

r? 2n(a)rt
R(ra) i+ —5——-S5—>4—, 20
z(r@) O+v,1(a) 3op(a) (20)
with
1 sinfa  cos?a
f— s 21
2@ v @D

sinfa cos?a\ 2
na =——+-—5—

Uy U
a4 4 ~ in 2
msm'-a 1n,COS" @  HSINTacCOS”™a
y ( il meosia  sinacosay
U1 %) U1V

where t denotes the real part of the complex-valued reflection trav-
eltime; ¢, denotes the two-way zero-offset reflection traveltime in
the nonattenuating reference medium corresponding to Apy = 0; r
denotes the source-receiver radial offset; a denotes the acquisition
azimuth measured from x-axis in the [x, y] plane; the expression
for 7 is given by

3 1
n=—51ﬁ+m(1+nz—ns)

1
—5(772—'73)(—2+'72+3'73)773 ~E-1, (23)

where £ is given in equation 9, and £ — 1 is identical to the parameter
Nxy defined in Stovas (2015).

The fourth-order series expansion for the imaginary part of com-
plex-valued reflection traveltime is given by

r? 2no(a)r
2(r,a) ~ A3 <t2 + - =L ), 24)
! PO 0 vpla)  tguy(a)

where t; denotes the imaginary part of the complex-valued
traveltime, the attenuation NMO velocity and anellipticity vg(a)
and 5o (a) are the functions of the acquisition azimuth @, which
are defined by analogy with azimuthal NMO velocity 21 and anel-
lipticity 22

1 sinfa  cos?a

02Q (a) U2Ql 02Q2

. (25)

sinfa  cos?a\ 2
no(a) = | —5—+—>—
vy V9,

2 2

- 4 4 ~ -0 2
Sin" a CcCoS'a SIN”- X COS“ a
X ("Q‘ 4 e 4o ) (26)
V51V02

1 4
Vo1 Voo
with

Upo(l + 261)

0N T 26, 1 260,

l)po(l + 252)

V14286, +250,°

@7

and vy, =



Downloaded 06/18/17 to 129.241.69.67. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/

Acoustic attenuating eikonal equation WA71

651 =2(14268,)801 (146m) +2(1+26,)* (eg1 =11 +2¢€01m1)

where vy and v; denote the magnitudes of the real and imaginary

flor= 2(1426, +264,)

800 =2(1428,)802 (14-61) +2(1+26,)* (eg2 =112 +2€02112)

, parts of the complex energy-velocity vector. For a ray propagat-
28 ing in a homogeneous attenuating medium, the complex energy-
(28) velocity vector is homogeneous, which means that the direction of
the vector constructed by the real part of the complex vector coincides
with the direction of the vector constructed by the imaginary part of
the complex vector. For a general attenuating anisotropic medium,

02— 2(1426,+26,)?

1
2(1+25, +25Q1)(1+252+25Q2)(

=2(1+43m, +3n,=3n3) (1+26,)5g> + (1+25,)5¢,)
+(1 +252)(2(1+252)§Q3(1—7]1 +3n, 413 +6Q2)

No=

2601602

+(1428)) (1t =2 (1412 —113) +dega (1411 +12—113)
+ (12 =n3)(=2+m+313)))), (30)

where §; and &, are the Thomsen-type anisotropy
parameters defined in Appendix A.

Equation 30 shows that 7, is independent of
attenuation-anisotropy parameter £q;. A similar
phenomenon is also found in the expression
for £(¢) in equation 24 of Zhu and Tsvankin
(2007). For the orthorhombic media with iso-
tropic attenuation coefficients (g5 =g, =
801 =080, =803=0), the attenuation NMO
velocity and attenuation anellipticity in equa-
tions 25 and 26 reduce to the NMO velocity
and anellipticity in equations 21 and 22. In this
case, the approximation for the imaginary part of
traveltime is expressed by

t;(r,a) = Apytg(r, @), (31

where 75 is given in equation 20.

NUMERICAL EXAMPLES

For a homogeneous attenuating medium, the
complex-valued traveltime of a propagating ray is
directly controlled by the ray velocity and the ray
attenuation (Vavrycuk, 2007). In the first example,
we investigate the influence of the S-wave param-
eters vgy and Agg on the P-wave ray velocity and
ray attenuation for an attenuating orthorhom-
bic medium. The ray velocity V,,, and the ray-
attenuation coefficient A, are defined by
Vavrycuk (2007) as follows:

V% + 07
Vray = % ) (32)

2U1
Ay = , (33)

-
vR + U7

, VavryCuk (2007) proposes a method to calculate the exact com-
(29) plex-valued energy velocity from the ray-propagation direction. In
his method, a system of nonlinear polynomial equations in the un-

40 ;""20

o(°) 60 -

80 0

Figure 1. The (a) velocity V.,, and (b) attenuation A, of P-wave rays in the attenuating
orthorhombic model shown in Table 1. The © and ® denote the polar and azimuthal
angles of the ray-propagation direction, in which the polar angle is measured from the
z-axis and the azimuthal angle is measured from the x-axis in the [x, y] plane. For this
model, the anisotropy strengths of the velocity and attenuation of P-wave rays are ap-
proximately 0.21 and 0.89, respectively, where the anisotropy strength is defined as the
absolute value of the fractional difference between the largest and smallest values of the
considered quantity along all propagation directions.

Figure 2. The relative differences in (a) velocity and (b) attenuation of P-wave rays,
between the attenuating orthorhombic model and its acoustic version. The relative differ-
ence is defined as |X — Y|/X X 100%, where X and Y denote the quantities correspond-
ing to the attenuating orthorhombic model and its acoustic version, respectively. The
attenuating orthorhombic model and its acoustic version are shown in Tables 1 and 2,
respectively.

Table 1. The attenuating orthorhombic model. The values of Ap, and Ag, corre-
spond to the quality factors Q33 = 20 and Q55 = 15 of the vertically propagating
P- and S-waves, respectively. The values of the attenuation parameters in this
model are designed by referring to Zhu and Tsvankin (2007).

vpo(km/s)  vgo(km/s) €] 1 71 & ) 72 53
3.0 1.5 0.2 —-0.05 0.1 0.3 0.1 03 -02
Apg Aso €91 o1 Yo1 2003 o2 Yo2 63
0.02498 0.03330 0.66 0.52 -04 -033 098 04 094
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Table 2. The acoustic attenuating orthorhombic model con-
verted from the model shown in Table 1.

vpo(km/s) v, (km/s) v,y (km/s) m bl UE
3.0 2.846 3.286 0.278 0.167 0.229
Apg €01 So1 €02 ) 303
0.02498 0.66 0.52 -0.33  0.98 0.94

Figure 3. The real part of the exact complex-valued traveltime for a
homogeneous, acoustic attenuating orthorhombic model. The r and z
denote the radial and vertical coordinates, respectively. Panels (a-d)
correspond to the observation azimuths 0, z/6, /3, and 7 /2, respec-
tively. The model parameters are shown in Table 2.

Figure 4. Similar to Figure 3, but for the imaginary parts of the
exact complex-valued traveltime.

known vector of phase slowness (Vavrycuk, 2006) is numerically
solved for a given ray-propagation direction. The complex-valued
energy velocity is then calculated from an exact and analytic for-
mula in terms of the vector of phase slowness (Vavrycuk, 2007).
Here, we adopt Vavrycuk’s (2007) method to calculate the exact
ray velocity and ray attenuation.

As a reference, Figure 1 shows the velocity and the attenuation
coefficient of P-wave rays in an attenuating orthorhombic model
with strong velocity and attenuation anisotropy. Figure 2 shows
the relative differences in the velocity and the attenuation coeffi-
cient from the attenuating orthorhombic media and the correspond-
ing acoustic attenuating media are less than 0.3% and 2.0%,

|ATR| (ms)

/1 |ATg| (ms)
30
25
20
15
10

5

0

r (km) r (km)

Figure 5. Absolute errors in the real part of the complex-valued trav-
eltime from equation 14 for a homogeneous, attenuating orthorhom-
bic medium. Panels (a-d) correspond to the observation azimuths
varying from 0 to z/2 and with an interval of z/6. The model param-
eters are shown in Table 2.

a b
i © Ia7] (ms) A7 (ms)
1.0 0.30
0.8 0.25
0.6 0.20
0.15
04 0.10
0.2 0.05
0 0
j §
| 1an] (ms) S jA7) (ms)
1.0 — 0.8
0.8 0.6
0.6
0.4
0.4
0.2 0.2
0 0

Figure 6. Similar to Figure 5, but for the imaginary part of the
complex-valued traveltime.
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1.0
0.8
0.6
0.4

r (km)

Figure 7. Absolute errors in the real part of the complex-valued trav-
eltime from equation 18 for a homogeneous, attenuating orthorhom-
bic medium. Panels (a-d) correspond to the observation azimuths
varying from 0 to z/2 and with an interval of /6. The model param-
eters are shown in Table 2.

r (km)

|A7| (ms) IS | 107 (ms)
0.10 0.10
0.08 0.08
0.06 0.06
0.04 0.04
0.02 0.02
0 ]

17| (ms) 1A7] (ms)
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1
0 0

Figure 8. Similar to Figure 7, but for the imaginary part of the
complex-valued traveltime.

Figure 9. The first-order partial derivatives of the
real part of traveltime with respect to the perturba-
tion parameters (a) 7y, (b) np, (¢) 13, (d) &g,
(©) dg1, (0 €ga, (8) S92, and (h) 5p3. The travel-
time denotes the source-receiver traveltime, in
which the source and receiver are located at the
center and surface of a unit sphere, respectively.
The ® and ® denote the polar and azimuthal an-
gles of the distance vector from source to receiver,
where the polar angle is measured from the z-axis
and the azimuthal angle is measured from the
x-axis in the [x, y] plane. The model parameters
are shown in Table 2.
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respectively. The influence of the parameters vg, and Ag, on the P-
wave ray-attenuation coefficient is larger than their influence on the
P-wave ray velocity. This example implies that the parameters vg,
and Agq have a minor effect on the P-wave complex-valued trav-
eltime even for an orthorhombic medium with strong velocity and
attenuation anisotropy. Because the parameters vg, and Agy do not
affect the velocity and the attenuation coefficient of P-wave rays in
an attenuating isotropic medium, it is reasonable to believe that
their influence on the velocity and the attenuation coefficient of
P-wave rays in an attenuating orthorhombic medium is generally
weak and becomes weaker with a decrease in the velocity and at-
tenuation anisotropy.

In the second example, we compare the accuracy of the two pro-
posed solutions 14 and 18 for a homogeneous attenuating ortho-
rhombic model. The exact complex-valued traveltime equals to
the propagation distance divided by the homogeneous complex en-
ergy velocity (Vavrycuk, 2007), in which the complex energy veloc-
ity is calculated by numerical methods in the first example.
Figures 3 and 4 show the real and imaginary parts of the exact
complex-valued traveltime along different acquisition azimuths.
The attenuation anisotropy (corresponding to the anisotropy of
the imaginary part of the complex-valued traveltime) is much

Figure 10. Similar to Figure 9, but for the imagi-
nary part of the traveltime.

stronger than the wavefront anisotropy (corresponding to the
anisotropy of the real part of the complex-valued traveltime). Com-
parison of Figures 5 and 6 with Figures 7 and 8 shows that equa-
tion 18 is more accurate than equation 14, which implies that the
Shanks transform improves the accuracy of the complex-valued per-
turbation expansion.

L x (km/s)

o

Figure 11. The azimuthal variation of NMO velocities in a hori-
zontal, attenuating orthorhombic layer. The dashed line and the
solid line denote the NMO velocity from equation 21, and
the attenuation NMO velocity from equation 25, respectively.
The model parameters are shown in Table 2.

at,
8693
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Figure 12. The azimuthal variation of anellipticities in a hori-
zontal, attenuating orthorhombic layer. The dashed line and
the solid line denote the anellipticity from equation 22,
and the attenuation anellipticity from equation 26, respectively.
The model parameters are shown in Table 2.

Figure 13. The relative difference between the real part of
the complex-valued reflection traveltime from an attenuating
orthorhombic layer and the reflection traveltime from its
nonattenuating reference, in which the nonattenuating reference
corresponds to the real part of the stiffness coefficient matrix
of the attenuating medium. The relative difference is defined
as |fg — tg|/tg X 100%, where fp and tp denote the real part
of the complex-valued traveltime from the attenuating ortho-
rhombic model and the traveltime from its nonattenuating refer-
ence, respectively. The medium parameters of the layer are
shown in Table 2. The layer thickness z is 1 km.

1_5\’0.0

Figure 14. The relative error of the series expansion 24 for the imagi-
nary part of traveltime of P-waves in an attenuating orthorhombic
layer. The medium parameters of the layer are shown in Table 2.
The layer depth is 1 km.

In the third example, we analyze the sensitivity of the real
and imaginary parts of the traveltime to the anellipticity parameters
(11, 12, and n3) and the attenuation-anisotropy parameters (e¢;,
001> €g2» 002> and Jy3). The first-order partial derivatives of trav-
eltime with respect to the considered parameters describe the sen-
sitivity of the traveltime to these parameters. We observe the
directional variation of the partial derivatives of the traveltime with
respect to the considered parameters. The source and the receiver are
located at the center and the surface of a unit sphere, respectively.
Figure 9 shows that the real part of the traveltime is sensitive to only
the anellipticity parameters. Parameters #; and 7, affect the real part
of the traveltime of the rays close to the [y, z] and [x, y] planes, re-
spectively. Parameter 75 affects the real part of traveltime of the rays
between the [y, z] and [x, y] planes. Meanwhile, the influence of
these anellipticity parameters on the real part of the traveltime be-
comes substantial only when the polar angle of the ray direction
is approximately larger than 40°. The real part of the traveltime is
insensitive to all the attenuation-anisotropy parameters. This implies
that it could be impossible to invert for these attenuation-anisotropy
parameters from the real part of the traveltime in practice. Figure 10
shows that the imaginary part of the traveltime is sensitive to all the
anellipticity and attenuation-anisotropy parameters. Parameters 7,
€1, and 0 affect the imaginary part of traveltime of rays close to
the [y, z] planes. In contrast, parameters 7,, &, and J, affect the
imaginary part of traveltime of rays close to the [x, y] plane. Param-
eters 773 and 65 affect the imaginary part of traveltime of rays between
the [y, z] and [x, y] planes, and this influence becomes substantial
when the polar angle of these rays is larger than 50°.

In the last example, we investigate the reflection traveltime from a
horizontal, attenuating orthorhombic layer. Figure 11 shows that the
attenuation NMO velocity is smaller than the NMO velocity, but the
attenuation NMO velocity ellipse has a similar shape to the NMO
velocity ellipse. The anellipticity affects the nonhyperbolic strength
of the real part of the complex-valued reflection traveltime: the larger
the anellipticity, the stronger the nonhyperbolic behavior. Similarly,
the attenuation anellipticity affects the nonhyperbolic strength of the
imaginary part of the complex-valued reflection traveltime. Figure 12
shows that the nonhyperbolic strength of the imaginary part of the
complex-valued reflection traveltime along the x-axis is stronger than
along the y-axis, whereas the nonhyperbolic strength of the real part
of the complex-valued traveltime along the x-axis is weaker than
along the y-axis. Figure 13 shows that the real part of the reflection
traveltime from the attenuating orthorhombic layer is much closer to
the reflection traveltime from its nonattenuating reference. This in-
dicates that we can use the existing traveltime formulas developed
for nonattenuating orthorhombic layers to approximately describe
the real part of the complex-valued reflection traveltime from the at-
tenuating orthorhombic layers. Figure 14 shows that the series expan-
sion 24 for the imaginary part of the complex-valued reflection
traveltime is accurate only for the ratios between the source-receiver
radial offset and the layer depth is less than 0.9. The error of the series
expansion increases rapidly for a larger source-receiver radial offset.

CONCLUSION

The presented acoustic eikonal equation governs the complex-val-
ued traveltime of P-waves in attenuating orthorhombic media. This
eikonal equation is derived under the assumption that the S-wave
velocity parameter vg, in Tsvankin’s notation and the S-wave nor-
malized attenuation coefficient Agy in Zhu and Tsvankin’s notation
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barely affect the complex-valued traveltime of P-waves in attenuating
orthorhombic media. Compared with the exact P-wave eikonal equa-
tion, the acoustic eikonal equation includes fewer parameters, which
is closer to what we can practically estimate using P-wave data. The
combination of a perturbation method and the Shanks transform leads
to an accurate solution to the acoustic eikonal equation for homo-
geneous attenuating orthorhombic media.

For a homogeneous attenuating orthorhombic medium, there ex-
ists a directional dependency of the sensitivity of the real and imagi-
nary parts of traveltime to the anellipticity parameters in the modified
Alkhalifah’s notation and the attenuation-anisotropy parameters
in Zhu and Tsvankin’s notation. Overall, the real part of the com-
plex-valued traveltime is sensitive only to the anellipticity parameters.
However, the imaginary part of the complex-valued traveltime is sen-
sitive to not only the attenuation-anisotropy parameters but also the
anellipticity parameters.

For a horizontally homogeneous orthorhombic layer with weak
attenuation, the real and imaginary parts of the complex-valued
reflection traveltime curves along an acquisition azimuth include
the nonzero fourth-order terms, which implies that the curves for the
real and imaginary parts have nonhyperbolic shapes; the real part of
the complex-valued P-wave reflection traveltime is approximately
independent of the attenuation parameters in Zhu and Tsvankin’s
notation, and it may be approximately described by the existing ap-
proximations developed for a nonattenuating orthorhombic medi-
um; the imaginary part of the complex-valued P-wave reflection
traveltime may be approximated by analogy with the traveltime
approximations developed for a nonattenuating orthorhombic medi-
um. Similar to the roles of NMO velocity and anellipticity, the at-
tenuation NMO velocity controls the curvature of the imaginary part
of the complex-valued traveltime around the zero source-receiver
offset, whereas the attenuation anellipticity controls the nonhyper-
bolic strength of the imaginary part of the complex-valued travel-
time. The real part of the complex-valued reflection traveltime can
be approximately described by the existing traveltime formulas de-
veloped for the nonattenuating medium. The series expansion for
the imaginary part of the complex-valued reflection traveltime is
valid only for short source-receiver offsets. The accurate approx-
imations need to be developed to describe the imaginary part of the
complex-valued reflection traveltime for larger source-receiver
offsets.
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APPENDIX A

THOMSEN-TYPE NOTATION FOR ATTENUATING
ORTHORHOMBIC MEDIA

In this appendix, we show the parameterization for an attenuating
orthorhombic medium with three symmetry planes orthogonal to
the Cartesian coordinate axes. The frequency-domain complex-
valued stiffness coefficients for an attenuating orthorhombic medium

are denoted by ¢;; = cf —ic};,
the minus sign corresponds to the sign in the exponential factor
exp(—iot) of a time-harmonic wave under consideration (Cerveny
and PSencik, 2009), where @ and ¢ denote the angular frequency
and time. For a time-harmonic plane wave with the exponential factor
exp(—iwt), the time-average strain energy and the dissipated energy
are positive in an attenuating anisotropic medium. This requires that
matrices composed of cf,- and ¢! ; are positive definite (Cerveny and
Pientik, 2006). The Q-matrix is defined by Q;; =cf/cl; corre-
sponding to the stiffness coefficients c;; = ciRj
T = 7 + it;. The density of the medium is denoted by p. Tsvankin’s
(1997) and Zhu and Tsvankin’s (2007) notations are combined to
parameterize an attenuating orthorhombic medium. Tsvankin’s
(1997) notation is used to describe the wave velocities in the elastic
reference corresponding to the real part of the stiffness coefficients of
an attenuating orthorhombic medium. Zhu and Tsvankin’s (2007)
notation is used to describe the attenuation coefficients of homo-
geneous plane waves in an attenuating orthorhombic medium. An
attenuating orthorhombic medium is parameterized by the following

parameters:

where i denotes the imaginary unit,

— ic{; and traveltime

e vpy: the velocity of the vertically propagating P-waves

R
€33
p

Upg = (A-1)

e vg: the velocity of the vertically propagating S-waves polar-
ized along the x-axis

R
Css
P

Vgo = (A_2)

*  £1,0],y;: the Thomsen-type parameters defined in the [y, z]
plane (the superscript 1 corresponds to the x-axis normal to
the [y, z] plane)

R R
— 0~ C3;

i — 2 A-3
3 N (A-3)

P (053 + 654)2 - (C§3 - 654)2

1= , (A-4)
2C§3(C§3 - C§4)
R R
_ €66 ~ Cs5
=080 75 A-5
71 2C§5 ( )

* &, 0,, yp: the Thomsen-type parameters defined in the [x, z]
plane (the superscript 2 corresponds to the y-axis normal to
the [x, z] plane)

R R
_C11— ¢33
=— 22 A-6
&2 26§3 ( )

(et + &) — (& - cK)?

52 = ’ (A_7)
25§3(C§3 - C§5)
R R
_ €66 — Cua
== A-8
72 26“154 ( )
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e 03: the Thomsen-type parameters defined in the [x, y] plane
(the superscript 3 corresponds to the z-axis normal to the
[x, z] plane; the x-axis plays the role of the symmetry axis)

55 (¢t + ) = (cff = &) ‘ (A-9)
) 2¢fy (efy = c6s)

*  Apg: the P-wave normalized attenuation coefficient in the
symmetry (vertical) direction

1
AP()EQ33 l +—2_ 1 . (A-IO)
Q33

¢ Ag): the S-wave normalized attenuation coefficient in the
symmetry (vertical) direction

Ago = Oss ,/Hi—l . (A-11)
QSS

* g1, Og1, 71 the Thomsen-type parameters for attenuation
anisotropy defined in the [y, z] plane

033 — 0n

€Q1 = Q22 (A— 1 2)

033=0uy R (ch+cf)? 0 Q
s of, G+ 2250 o (o8, + o)

C§3(C33 - Cf4)

6Q] =

El

(A-13)

. _ Oss Q66
2T O

* &g, Op» 70o: the Thomsen-type parameters for attenuation
anisotropy defined in the [x, z] plane

. _ 03 -0y
pE———,
© 01

(A-14)

(A-15)

033-0ss R (cfited)’ 03;-0
O C cks (Jfg_ss) +255; 13013( cty + k)

Oy = ,
e (e - 655)
(A-16)
Ou—0
Yo E%. (A-17)

*  0ps: the Thomsen-type parameters for attenuation anisotropy,
defined in the [x, y] plane

01106 R (cfi+ch)’ 01,-01 R R
O Cs5 (clﬁ—clgﬁ) + 255 12C12(612+C66)

ety (ef = C66)

6Q3 =
(A-18)

In the “An acoustic attenuating eikonal equation” section, we
consider the S-wave parameter vg, = 0 to derive the approximate

eikonal equation governing P-wave traveltimes in an attenuating
orthorhombic medium. As explained in that section, the S-wave
parameter Agy in Zhu and Tsvankin’s (2007) notation will vanish
from the acoustic attenuating eikonal equation. Except for vp,, the
other parameters in Tsvankin’s (1997) notation are replaced by the
modified Alkhalifah’s (2003) notation (Hao et al., 2016) to describe
the nonattenuation part of the P-waves in an attenuating orthorhom-
bic medium because the parameters in the later notation are more
closely linked to the P-wave anisotropy for nonattenuating ortho-
rhombic media. In addition to the P-wave velocity vp, defined in
equation A-1, the other parameters in the modified Alkhalifah’s no-
tation are defined as follows:

)2+ 2K R+ K ek
n]—DP() /1_"_25] \/ 23 23 44;2 33 44’ (A-lg)

C33 —Ciy)

2
0,2 = 0p0 1+252—\/ )" 2ehcss beess (50

023_055)

n = £ — 51 — C§2(C3R3 - 654) _ - (A-21)
1426, 2((cy)* +2cKefy + cKeky) 27
0= & — 52 — Cllel (C§3 — C§5) _ - (A-22)
PT1428 2((cR)P 4 2cRheR 4 Kiek) 2
n _e1—&—03(14+2¢) B (cf —c&) 1
3= x>
(1428;)(1+2¢3)  2((cFy)* +2cf, ek +cfick) 2
(A-23)

where subscripts 1, 2, 3 except for c& ; correspond to the [y, z], [x, z],
and [x, y] symmetry planes of an orthorhombic medium, respec-
tively; v,; (i = 1, 2) denote the NMO velocities; and #; (i = 3, 2,
3) denote the anellipticity parameters (Grechka and Tsvankin, 1999).

APPENDIX B

THE GOVERNING EQUATIONS FOR
TRAVELTIME COEFFICIENTS

In this appendix, we derive the governing equations for traveltime
coefficients as illustrated in equations 15-17.
The acoustic eikonal equation 2 is generally expressed by
F(t.7,.7t,,7,) =0, (B-1)
where function F represents the left side of equation 2;
€ = (11.1M2:113. €01 601 €02+ 60 5Q3)T denotes the vector of per-
turbation parameters; 7, 7, and 7, denote the slowness compo-
nents, which denote the partial derivative of traveltime 7 with
respect to x, y, and z. It is noted that the stiffness coefficients
a;; in equation 2 are explicit functions of Z.
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In equation B-1, traveltime is regarded as an implicit function of

perturbation parameters. Therefore, the Taylor series of equation B-1
with respect to the perturbation parameters is given by

OF | OF drg
F A
lo— 0+Z( 9t ¢ OF, > i
128: 0*F PF oty = O°F ok
iy —\ot,0¢, afaTKaf 0f ;07 . ;
()2—F(3‘L'K 0TM a_F aZT,K fil’ﬂ/'+ :0’
01' KaTM df af aT’K df,dfj 0 '

(B-2)

where the uppercase subscripts K and M take x, y, and z and Einstein
summation convention over subscripts K and M are considered.

As illustrated in equation 14, the trial solution to equation B-1 is
defined as the second-order expansion of traveltime with respect to
the perturbation parameters

T—TO+ZTf + Z T (B-3)

i,j=1;i<j

where 7, 7;, and 7; j are the undetermined zero-, first-, and second-
order traveltime coefficients.

To determine the equations governing the traveltime coefficients,
we define the following notations:

Fo=F(€ =0,70,.70,.70,), (B-4)
F(€,70.4.70.,,
P G R X 0] B S N
o £—0
F(€.,70,:70,y:70.2)

F..= A DA , ,j=1,2,3,...,8andi <.
ij 2t 02, e i,j andi<;j

(B-6)

Before calculating the expansion coefficients at £ = 0 in equation B-2,
we insert the trial solution B-3 into equation B-2, which implies that
the zero-, first-, and second-order expansion coefficients in equa-
tion B-2 are zero after considering £ = 0. Therefore, we may derive
the following equations about the traveltime coefficients:

FO = 0, (B'7)

dF,

F4+—'[4 =
"ok

0, i=123,....8, (B-8)

OF oF ; 0’Fy
Fi.f+670_KT.f,K+0r0_KT.i~K aro_,(arWTLKTj,M ij=12,3

.,8andi<j.
+(1 +5i_i)(;)f%7ij,l( =0,

(B-9)

In equation B-7, §;; is the Kronecker delta function; the expression
for F is obtained from equations 2-8 as well as B-1 and B-4

= (1 = 2ik)(v}y75, + 03175, +vpo75.) — 1, (B-10)

where k is defined by the first of equation 9.
From equations B-7 and B-10, we obtain the governing equation
for the zero-order traveltime coefficients

1
VnaTox + VniTo, + VBoTo, = T2k (B-11)

In a similar way, we obtain the governing equations for the first-
and second-order traveltime coefficients from equations B-8 and B-9

2 2 2 _
U32%0,xTix + Un1%0,yTiy + Upp?0,z%i; = fi(TO)’

i=1,2,3,...,8, (B-12)

2 2 ) _
VinTouTijx + Vn1T0,Tijy + VpoTo.:Tijc = fij(T0. 70, 7)),

i,j=1,2,3,...,8and i < j, (B-13)
with
filzg) = L i =1,2,3 8 (B-14)
ifo) = 2(1 = 2ik)’ T haed S
1
fij(TO»TivTj) ==

2(1 +6;;)(1 = 2ik)

 (F. + oF; N OF ; N ’F,
.. T> T< T. T> .
Yoty PN T argx KT arg ooy KM

i,j=1,2,3,...,8and i < j, (B-15)
where functions F; and F;; are obtained from equations B-5 and B-6.
Furthermore, we may obtam the analytic expression for f;(z() and
fij(70.7:.7;). However, the resulting algebra for f;;(zg.7;,7;) is
heavy. The analytic expressions for f;(z,) are as follows:

1 .
f1= _Euﬁlray +(1- 21k)v}2>01)311(2).y13,z, (B-16)

1
fr= —EvizTéx + (1 - Zik)vl%OUiZT%).xT%,z’ (B-17)
f (1 _21k) nlv ZT(Z)XT%y’ (B_lg)
2ik . .
fa=- (1-2ik) V3170, — KV 030 T 1T, — kU0 T TG o
(B-19)
[s = ikvpytg, 75 (B-20)
21k .
fo=— — ik 3270 x lkUnlUnZTO xTO} lkulz)ovﬁzT(z)’xT%»z’

(B-21)
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fr= _ikDéOT(Z).xT%,z’ (B-22)

fs = ikvly7 73 . (B-23)

The analytic expressions for f;;(z9.7;,7;) are accessible by contact-
ing the first author of the paper.

APPENDIX C

THE PERTURBATION COEFFICIENTS IN
EQUATION 14 FOR A HOMOGENEOUS,
ATTENUATING ORTHORHOMBIC MEDIUM

In this appendix, we show the zero-, first-, and second-order co-
efficients of equation 14 for a homogeneous, attenuating orthorhom-
bic medium. The single source is located at the origin of the Cartesian
coordinate system.

We preliminarily define the following intermediate quantities:

rxzi, T,EL, rzsi, (C-1)
Un2 Upg

=i+ 2+, (C-2)

A=V1 -2ik. (C-3)

The analytic expressions for the coefficients in equation 14 are
given as follows:
The zero-order coefficients
10 =A"1¢ (C-4)

The first-order coefficients

1 = =(P (3 + 1), (C-5)
7, = {3712 (2 + T}%), (C-6)
73 =0, (C-7

7y =ik, (C-8)

75 = ik{30, EA 30y iT2, (C-9)
76 = ik¢ 347372 (2 + 21%), (C-10)
77 = ik 0d, T2, (C-11)
Tg = iké"%‘%;fvﬁzr,%f%. (C-12)

The second-order coefficients

1

T = 55_7/1_175((73 + 15)2(41)2( + 31_%)
+ (2 + T%)(ST)% + 1215)1% + 7213), (C-13)
Ty = —§‘7ﬂ‘1r§13((1§ + 15)2 -7(2 + Tf)r% +74),

(C-14)

T3 = A e (<20 4 7y — Toots + 1 — (1) 4 72)),
(C-15)

Ty == A3k (4ot + 5020 1)+ 2(22 + 4 TE - 218),
(C-16)

15 = =3ik{ T EAT3 0k (v — o) + (2 4 212)72),
(C-17)

T16 = 2ikETT A2 (203 (72 + 72) — (572 + 972) 7t + 1),
(C-18)

717 = 37 A ko rini e (2(a3 + 13) — 72), (C-19)

T3 = —ié"7/1_3u;12kvflzr§f)2,(4fi + T;‘

+ 111_%13 +74+ 51)2((1% +172)), (C-20)

1
Tyy = 56_7/1_11)2(((@2( + 73)2(37;2( + 413)

+ (2 + 1)2,)(121)26 + 51’%)1% + Tfr?), (C-21)

T3 = (AT (7 - 20 — i 4 ol - (g + 712)),

(C-22)

Ty = 3i§‘7/1_3k7)261_‘\‘, (72 + 75— 272), (C-23)

Tos = 3il7 A7, thkopyTinite (2(c + 13) — 72),  (C-24)

Tag = —il A3kt (28 + 3ritl + 6127 + 415

+ 2(47s 4 82273 + 1))7t = 2(72 + 13)7d),  (C-25)
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Ty = 37T A0 fkopyTick (vh — 1) — (273 + 73)72),
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