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ABSTRACT

Thewave equation plays a central role in seismic modeling,
processing, imaging and inversion. Incorporating attenuation
anisotropy into the acoustic anisotropic wave equations pro-
vides a choice for acoustic forward and inverse modeling in
attenuating anisotropic media. However, the existing viscoa-
coustic anisotropic wave equations are obtained for a specified
viscoacoustic model. We have developed a relatively general
representation of the scalar and vector viscoacoustic wave
equations for orthorhombic anisotropy. We also obtain the
viscoacoustic wave equations for transverse isotropy as a spe-
cial case. The viscoacoustic orthorhombic wave equations
are flexible for multiple viscoacoustic models. We take into
account the classic visocoacoustic models such as the
Kelvin-Voigt, Maxwell, standard-linear-solid and Kjartansson
models, and we derive the corresponding viscoacoustic wave
equations in differential form. To analyze the wave propaga-
tion in viscoacoustic models, we derive the asymptotic point-
source solution of the scalar wave equation. Numerical exam-
ples indicate a comparison of the acoustic waveforms excited
by a point source in the viscoacoustic orthorhombic models
and the corresponding nonattenuating model, and the effect of
the attenuation anisotropy on the acoustic waveforms.

INTRODUCTION

Linear viscoelasticity has been widely used in describing anelas-
tic behaviors of rocks. For linear viscoelastic media, the time-do-
main constitutive equation describing the relation between stress
and strain is expressed in a mathematical form by the Boltzmann
superposition principle (Lakes, 2009). The stress depends on the
complete time history of the strain, and vice versa. The constitutive

equation is characterized by relaxation or creep functions. The
theory of linear viscoelasticity is discussed systematically by Hud-
son (1980), Christensen (1982), Pipkin (1986), Tschoegl (1989),
Borcherdt (2009), Lakes (2009) and Carcione (2015).
For 1D viscoelastic media, some elementary viscoelastic models

can be built by a specified combination of an elastic spring and a
viscous dash-pot. The stress-strain relation for the spring is purely
elastic, whereas the one for the dash-pot is viscous describing the
behavior of a Newtonian fluid. The Kelvin-Voigt model is described
by connecting a spring and a dash-pot in parallel. The Maxwell
model is obtained by connecting a spring and a dash-pot in series.
The standard-linear-solid (SLS) model, also called the Zener model,
can be formed by connecting a spring in series with a Kelvin-Voigt
model. All these models have the behavior of frequency-dependent
quality factor. By contrast, the Kjartansson model has a power-law
relaxation function (Kjartansson, 1979), and the quality factor for
the model is independent of frequency. Hence, this model is
also called the constant Q model. As mentioned by Schiessel et al.
(1995), the dynamic property of the Kjartansson model is intermedi-
ate between the features of the elastic solid (spring) and viscous
liquid (dash-pot). The Kjartansson model can be used as a fractional
element to construct the fractional Kelvin-Voigt, Maxwell and
SLS models (Schiessel et al., 1995). Extending some of these models
to the anisotropic case can be seen in Carcione (2015), Bai et al.
(2017), Zhu (2017) and Zhu and Bai (2019).
Studying wave propagation in a homogeneous viscoelastic

medium can be realized by calculating the point-source radiation
as the solution of the viscoelastic wave equation. According to the
correspondence principle (Ben-Menahem and Singh, 1981), the exact
solution of the viscoelastic wave equation for a time harmonic
point source can be obtained by substituting the viscoelastic medium
parameters into the solution of the corresponding elastic wave
equation. For an elastic anisotropic medium, the exact point-source
radiation can be found in Yeatts (1984), van der Hijden (1987),
Burridge et al. (1993) and Wang and Archenbach (1995). The
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steepest-descent and stationary-phase methods are efficient tools to
derive the asymptotic approximation for the point-source
radiation (Buchwald, 1959; Lighthill, 1960; Vavryčuk, 1997, 2007a).
The point-source radiation for a homogeneous viscoelastic aniso-
tropic medium can be obtained by analogy with the derivation
of the point-source solution for an elastic medium. Bleistein
(2012) uses the steepest-descent method to derive an approximate
formula for the n-fold complex-valued integral. Shekar and
Tsvankin (2014) implement Bleistein’s (2012) formula to derive
the asymptotic point-source radiation for a viscoelastic anisotropic
medium. Vavryčuk (2007a) demonstrates the validity of the asymp-
totic approximation for the Green function for a viscoelastic aniso-
tropic medium.
The acoustic anisotropic wave equations (Alkhalifah, 2000,

2003) for nonattenuating transversely isotropic (TI) and orthorhom-
bic media have been widely implemented in exploration seismology
for anisotropic media. As an alternative to the scalar form of the
acoustic anisotropic wave equations (Alkhalifah, 2000, 2003), a
vector form of the acoustic wave equations can be found in Duve-
neck and Bakker (2011) for TI media and Fowler and King (2011)
for orthorhombic media. Although both forms of the acoustic aniso-
tropic wave equations are based on the acoustic approximation (i.e.,
the S-wave velocity parameter vS0 equals zero), the scalar acoustic
anisotropic wave equations are obtained from the dispersion rela-
tion, and the vector acoustic anisotropic wave equations are derived
from a combination of the equation of motion, the relation between
strain and particle displacement, and the constitutive equation. Incor-
porating the attenuation anisotropy (Zhu and Tsvankin, 2006, 2007)
into the acoustic anisotropic wave equations prompts the develop-
ment of the acoustic wave equations. Xu et al. (2016) and da Silva
et al. (2019) obtain different vector forms of the viscoacoustic TI
wave equation for the generalized SLS model. Qu et al. (2017) in-
corporate attenuation terms into the acoustic TI wave equation (Duve-
neck and Bakker, 2011) and derive a pseudodifferential viscoacoustic
TI wave equation. All these viscoacoustic wave equations naturally
rely on a specified viscoacoustic model.
The aim of this paper is to show a relatively general representation

of the viscoacoustic wave equations for orthorhombic anisotropy in
scalar and vector forms. These viscoacoustic wave equations do not
rely on a specified viscoacoustic model. In the frequency domain, the
viscoacoustic wave equations have the same form as the acoustic
wave equations for nonattenuating TI and orthorhombic media. In
the time domain, the Riemann-Stieltjes integral (Apostol, 1974) is
involved in the viscoacoustic wave equations. The approximate for-
mula for the n-fold complex-valued integral (Bleistein, 2012) is
implemented to derive the asymptotic acoustic point-source radiation
for the scalar viscoacoustic wave equation.
In this paper, wewill switch between the time-space and frequency-

wavenumber domains. The Fourier transform of the time-space
domain wavefield fðx; tÞ is written as

f̂ðk;ωÞ¼
Z

∞

−∞

Z
∞

−∞

Z
∞

−∞

Z
∞

−∞
fðx;tÞeiðωt−k1x−k2y−k3zÞdxdydzdt;

(1)

and the inverse Fourier transform of the frequency-wavenumber
domain wavefield f̂ðk;ωÞ is written as

fðx; tÞ¼ 1

ð2πÞ4

×
Z

∞

−∞

Z
∞

−∞

Z
∞

−∞

Z
∞

−∞
f̂ðk;ωÞeiðk1xþk2yþk3z−ωtÞdk1dk2dk3dω;

(2)

where x ¼ ðx; y; zÞT and k ¼ ðk1; k2; k3ÞT denote the position and
wavenumber vectors, respectively, and t and ω denote the time and
the angular frequency, respectively.
In addition, we will use the Riemann-Stieltjes integral (Apostol,

1974) to derive the viscoacoustic wave equations. Referring to
Carcione (2015), we define the operation “⊙” of two functions
of time as

gðtÞ⊙sðtÞ ≡ gðtÞ � dsðtÞ ¼
Z

t

−∞
gðt − τÞdsðτÞ (3)

to describe the Riemann-Stieltjes convolution integral. Here, gðtÞ
and sðtÞ are the functions of time, we have assumed gðtÞ to be
causal, and the operation “�” denotes the time convolution.
An important property of the operation is

gðtÞ⊙sðtÞ ¼ sðtÞ⊙gðtÞ: (4)

If any one of these two functions is a constant, the operation ⊙
becomes a product; that is,

κ⊙sðtÞ ¼ sðtÞ⊙κ ¼ κsðtÞ; (5)

where κ is a constant.
More properties about the Riemann-Stieltjes convolution integral

can be found in Gurtin and Sternberg (1962) and Apostol (1974).

CONSTITUTIVE EQUATION

For a viscoelastic medium, the stress at a point depends on the
complete time history of the strain at the point. The relation between
the stress and the strain is causal, that is the current value of the
stress does not depend on the future value of the strain (Hudson,
1980). Assuming the medium to be homogeneous and anisotropic,
the constitutive equation relating the stress and the strain is written
as the Riemann-Stieltjes convolution integral,

σijðx; tÞ ¼ ψ ijklðtÞ⊙eklðx; tÞ; (6)

where the operation ⊙ is defined in equation 3, t denotes the time, x
denotes the spatial position, σij denote the second-order stress
components, ekl denote the second-order strain components, ψ ijkl de-
note the fourth-order relaxation functions, and the repeated indices
satisfy the Einstein summation convention. The relaxation functions
describe the stress response to a unit strain applied beginning at the
time t ¼ 0. Hence, the relaxation functions are required to be a non-
increasing causal function of time.
We assume that the medium starts to oscillate at the time t ¼ 0

and no historical strain exists for t ≤ 0 throughout the paper. In the
case that the relaxation functions are bounded when the time ap-
proaches zero from the positive time axis, that is, jψ ijklð0þÞj < ∞,
the Riemann-Stieltjes convolution integral can be rewritten as
(Gurtin and Sternberg, 1962; Hudson, 1980)
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ψ ijklðtÞ⊙eklðx; tÞ ¼ ψ ijklð0þÞeklðx; tÞ

þ
Z

t

0

_ψ ijklðt − τÞeklðx; τÞdτ; (7)

where “0þ” means approaching zero from the positive time axis,
ψ ijklð0þÞ is the instantaneous elastic stiffness coefficients, and the
dot on _ψ ijkl denotes the first derivative with respect to the time t.
The above equation is applicable for the Kelvin-Voigt, Maxwell and
SLS models shown in the “Viscoacoustic orthorhombic models and
the corresponding wave equations” section.
In the case in which the relaxation functions are infinite when the

time approaches zero from the positive time axis, i.e., jψ ijklð0þÞj
¼ ∞, equation 7 cannot be used to compute the stress. We have
to use equation 6 and deal with the singularity at t ¼ 0 for a specific
relaxation function. This case often appears in viscoelastic/viscoa-
coustic models with relaxation functions of the power-law form, such
as the Kjartansson model (see the density-normalized relaxation func-
tions as illustrated in equation 39). For the Kjartansson model, the
Riemann-Stieltjes convolution integral can be rewritten as

ψ ijklðtÞ⊙eklðx; tÞ ¼
Z

t

0

_ψ ijklðt − τÞeklðx; τÞdτ: (8)

Here, the contribution of the singular term ψ ijklð0þÞeklðx; tÞ to the
result is not taken into account because the output of a physical system
must be finite. This treatment of the singular term can be verified in
Kjartansson (1979).
Applying the Fourier transform to equation 6 and taking account

of equations 7 and 8, we derive the frequency-domain constitutive
relation between the stress and the strain,

σ̂ijðx;ωÞ ¼ cijklðωÞêklðx;ωÞ; (9)

where ω denotes the angular frequency. The complex stiffness
coefficients cijkl are given by

cijklðωÞ¼
�
ψ ijklð0þÞþR∞0 _ψ ijklðtÞeiωtdt; if jψ ijklð0þÞj<∞R
∞
0 _ψ ijklðtÞeiωtdt; if jψ ijklð0þÞj¼∞;

(10)

where the integral on the right side of the above equation describes the
Fourier transform of the first temporal derivative of ψ ijkl and the case
jψ ijklð0þÞj ¼ ∞ corresponds to the Kjartansson model specifically.

VISCOACOUSTIC ORTHORHOMBIC
WAVE EQUATIONS

In this section, we describe the viscoacoustic orthorhombic wave
equations in scalar and vector forms. We use the two-index notation
ϕij to denote the density-normalized relaxation functions in an ortho-
rhombic medium. The density-normalized stiffness coefficients as
functions of frequency are denoted by aijðωÞ ¼ aRijðωÞ − isgnðωÞ
aIijðωÞ, where i denotes the imaginary unit, the superscripts R and
I denote the real and imaginary parts of the density-normalized stiff-
ness coefficients, respectively, and the minus sign “−” corresponds to
the Fourier transform convention over t (equation 1). The elements of
the quality factor matrix are given by QijðωÞ ¼ aRijðωÞ∕aIijðωÞ.
We first combine Tsvankin’s (1997) and Zhu and Tsvankin’s

(2007) notations to describe the stiffness coefficients in the fre-

quency domain, in which the parameters in these two notations
are dependent on frequency. We then use the acoustic approxima-
tion to set the S-wave velocity parameter vS0 equal to zero for all
frequencies. The acoustic approximation is based on the fact that the
P-wave velocities and attenuation coefficients are insensitive to the
S-wave velocity parameter vS0 and the S-wave attenuation parameter
AS0 (Hao and Alkhalifah, 2017a, 2017b). As a result, the stiffness
coefficients associated with P-waves are independent of the S-wave
velocity vS0 and anisotropy parameters γ1 and γ2 in Tsvankin’s (1997)
notation, and the S-wave attenuation parameter AS0 and attenuation-
anisotropy parameters γQ1 and γQ2 in Zhu and Tsvankin’s (2007)
notation, where the subscripts “1” and “2” denote the x- and
y-axes normal to the ½y; z� and ½x; z� symmetry planes, respectively.
We next use the modified Alkhalifah’s (2003) notation (see
equations A-1–A-6) to replace Tsvankin’s (1997) notation. Finally, all
these operations give rise to the density-normalized stiffness coeffi-
cients in terms of the parameters in the modified Alkhalifah’s (2003)
and Zhu and Tsvankin’s (2007) notations as follows:

a11ðωÞ ¼ v2n2½1 − 2ikQð1þ ϵQ2Þ�ð1þ 2η2Þ;
a12ðωÞ ¼ vn1vn2ξ½1 − 2ikQð1þ ϵQ2Þ�

− ikQδQ3ð1þ ϵQ2Þ
v3n2ð1þ 2η2Þ2

vn1ξ
;

a13ðωÞ ¼ vP0vn2ð1 − 2ikQÞ − ikQδQ2

v3P0
vn2

;

a22ðωÞ ¼ v2n1½1 − 2ikQð1þ ϵQ1Þ�ð1þ 2η1Þ;

a23ðωÞ ¼ vP0vn1ð1 − 2ikQÞ − ikQδQ1

v3P0
vn1

;

a33ðωÞ ¼ v2P0ð1 − 2ikQÞ; (11)

with

kQðωÞ ¼ sgnðωÞ AP0

1 − A2
P0

; (12)

and

ξðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2η1Þð1þ 2η2Þ

1þ 2η3

s
; (13)

where the argument ω of the quantities on the right side of equa-
tions 11–13 is omitted. The term i denotes the imaginary unit and
vP0 denotes the velocity of the vertically propagating P-wave in the
nonattenuating reference medium (aIij ¼ 0). The subscripts “1”, “2”
and “3” denote the x-, y- and z-axes normal to the ½y; z�, ½x; z� and
½x; y� planes, respectively. The terms vn1 and vn2 denote the normal
moveout (NMO) velocities in the ½y; z� and ½x; z� planes of the refer-
ence medium, respectively. η1, η2 and η3 denote the anellipticity
parameters in the ½y; z�, ½x; z� and ½x; y� planes, respectively, of the
reference medium. AP0 denotes the wavenumber-normalized attenu-
ation coefficient of the vertically propagating P-wave. ϵQ1 and δQ1

are the attenuation-anisotropy parameters defined in the ½y; z� plane,
ϵQ2 and δQ2 are the attenuation-anisotropy parameters defined in the
½x; z� plane, and δQ3 is the attenuation-anisotropy parameter in the
½x; y� plane. The definition of all these medium parameters is shown
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in Appendix A. Equation 13 is related to the parameter ηxy defined in
Stovas (2015).
We first take into account the derivation of the scalar wave equa-

tion. The dispersion relation can be obtained from the Christoffel
equation for a viscoacoustic orthorhombic medium. Referring to
Hao and Alkhalifah (2017a), the dispersion relation is written as

ω6 ¼ Âω4k21 þ B̂ω4k22 þ Ĉω4k23 þ D̂ω2k21k
2
2 þ Êω2k21k

2
3

þ F̂ω2k22k
2
3 þ Ĝk21k

2
2k

2
3; (14)

with

Â ¼ a11;

B̂ ¼ a22;

Ĉ ¼ a33;

D̂ ¼ a212 − a11a22;

Ê ¼ a213 − a11a33;

F̂ ¼ a223 − a22a33;

Ĝ ¼ −a11a223 − a22a213 − a33a212

þ 2a12a13a23 þ a11a22a33; (15)

where k1, k2 and k3 denote the x-, y- and z-components of the wave-
number vector, and the variable ω of the functions Â through Ĝ and
aij is omitted for brevity.
We introduce a pseudo-pressure field P̂ in the frequency-wave-

number domain. We multiply equation 14 by P̂, use the inverse Fou-
rier transform and take account of the correspondence relation
between equations 6 and 9. As a result, the viscoacoustic wave
equation in the scalar form is written as

∂6P
∂t6

¼A⊙ ∂6P
∂t4∂x2

þB⊙ ∂6P
∂t4∂y2

þC⊙ ∂6P
∂t4∂z2

þD⊙ ∂6P
∂t2∂x2∂y2

þE⊙ ∂6P
∂t2∂x2∂z2

þF⊙ ∂6P
∂t2∂y2∂z2

þG⊙ ∂6P
∂x2∂y2∂z2

;

(16)

with

A ¼ ϕ11;

B ¼ ϕ22;

C ¼ ϕ33;

D ¼ ϕ12⊙ϕ12 − ϕ11⊙ϕ22;

E ¼ ϕ13⊙ϕ13 − ϕ11⊙ϕ33;

F ¼ ϕ23⊙ϕ23 − ϕ22⊙ϕ33;

G ¼ −ϕ11⊙ϕ23⊙ϕ23 − ϕ22⊙ϕ13⊙ϕ13 − ϕ33⊙ϕ12⊙ϕ12

þ 2ϕ12⊙ϕ13⊙ϕ23 þ ϕ11⊙ϕ22⊙ϕ33; (17)

where the argument t is omitted for the functions A through G and
ϕij, P ¼ Pðx; tÞ denotes the pseudo-pressure wavefield in the time-
space domain, and ϕij denote the density-normalized second-order

relaxation functions. Property 4 of the Riemann-Stieltjes convolu-
tion integral has been taken into account in equation 17.
We next take into account the derivation of the vector wave equa-

tions. Using the equation of motion, the constitutive equation and
the relation between the strain and the particle displacement, we
derive the acoustic wave equations in the vector form as follows.
The wave equations in terms of the particle displacement and the

normal stresses are given by

∂2ux
∂t2

¼ ϕ11⊙∂2ux
∂x2

þϕ12⊙ ∂2uy
∂x∂y

þϕ13⊙ ∂2uz
∂x∂z

;

∂2uy
∂t2

¼ ϕ12⊙ ∂2ux
∂x∂y

þϕ22⊙∂2uy
∂y2

þϕ23⊙ ∂2uz
∂y∂z

;

∂2uz
∂t2

¼ ϕ13⊙ ∂2ux
∂x∂z

þϕ23⊙ ∂2uy
∂y∂z

þϕ33⊙∂2uz
∂z2

: (18)

The wave equations in terms of the normal stresses are given by

∂2σxx
∂t2

¼ϕ11⊙∂2σxx
∂x2

þϕ12⊙∂2σyy
∂y2

þϕ13⊙∂2σzz
∂z2

;

∂2σyy
∂t2

¼ϕ12⊙∂2σxx
∂x2

þϕ22⊙∂2σyy
∂y2

þϕ23⊙∂2σzz
∂z2

;

∂2σzz
∂t2

¼ϕ13⊙∂2σxx
∂x2

þϕ23⊙∂2σyy
∂y2

þϕ33⊙∂2σzz
∂z2

; (19)

where ui and σii denote the particle displacement components and
the normal stresses, respectively. A detailed derivation of equa-
tions 18 and 19 is shown in Appendices B and C.
The wave equations in terms of the momentum density and the

normal stresses are given by

∂Jx
∂t

¼ ∂σxx
∂x

;

∂Jy
∂t

¼ ∂σyy
∂y

;

∂Jz
∂t

¼ ∂σzz
∂z

;

∂σxx
∂t

¼ ϕ11⊙ ∂Jx
∂x

þ ϕ12⊙ ∂Jy
∂y

þ ϕ13⊙ ∂Jz
∂z

;

∂σyy
∂t

¼ ϕ12⊙ ∂Jx
∂x

þ ϕ22⊙ ∂Jy
∂y

þ ϕ23⊙ ∂Jz
∂z

;

∂σzz
∂t

¼ ϕ13⊙ ∂Jx
∂x

þ ϕ23⊙ ∂Jy
∂y

þ ϕ33⊙ ∂Jz
∂z

; (20)

where J ¼ ðJx; Jy; JzÞT denotes the momentum density
(J ¼ ρ∂u∕∂t) according to Auld (1973). The first three rows of
equations 20 are obtained from the equation of motion. The last
three rows in equations 20 are obtained from the constitutive equa-
tion by assuming the density to be constant and the initial strain to
be zero. The latter assumption leads to equation C-3 in Appendix C.
If the density-normalized relaxation functions ϕij are constant (i.e.,

independent of time), the viscoacoustic medium will become nonat-
tenuating. Referring to property 5 of the Riemann-Stieltjes convolution
integral, all the proposed viscoacoustic wave equations can be reduced
to the acoustic wave equations for orthorhombic anisotropy. In this
case, the scalar wave equation 16 and the vector wave equations 19
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and 20 reduce to equation 17 in Alkhalifah (2003) and equations 6 and
5 in Fowler and King (2011), respectively. For transverse isotropy with
a vertical symmetry axis (VTI), the orthorhombic medium parameters
(vn1, η1, ϵQ1 and δQ1) defined in the ½y; z� plane are identical to
the parameters (vn2, η2, ϵQ2 and δQ2) defined in the ½x; z� plane, and
the parameters (η3 and δQ3) defined in the ½x; y� plane vanish. Hence,
the proposed wave equations can be simplified for transverse isotropy.
Appendix D shows the viscoacoustic VTI wave equations.

VISCOACOUSTIC ORTHORHOMBIC MODELS
AND THE CORRESPONDING WAVE EQUATIONS

Explicit expressions for the relaxation functions are needed to
implement the wave equations shown in the previous section. We
take into account the classic viscoacoustic models, i.e., the Kelvin-
Voigt, Maxwell, SLS and Kjartansson models. A detailed descrip-
tion of these models can be found in Carcione (2015).
For these models, we assume that the parameters in the modified

Alkhalifah’s (2003) and Zhu and Tsvankin’s (2007) notations are
known at a selected reference angular frequency ðωc > 0Þ, and we
denote them by putting a bar over them, e.g., v̄P0 ¼ vP0ðωcÞ and
ĀP0 ¼ AP0ðωcÞ. The reference frequency corresponding to ωc is de-
noted by fc. As illustrated in equation 11, the density-normalized
stiffness coefficients can be expressed in terms of the parameters of
the modified Alkhalifah’s (2003) and Zhu and Tsvankin’s (2007)
notations. The density-normalized stiffness coefficients at the refer-
ence angular frequency are denoted by āij ¼ āRij − iāIij. The ele-
ments of the quality factor matrix are denoted by Q̄ij ¼ āRij∕āIij.
Using these parameters with a specified viscoacoustic model at the
reference angular frequency, we can determine the density-
normalized relaxation functions ϕij in terms of time and the
density-normalized stiffness coefficients aij in terms of frequency.
Substituting the density-normalized relaxation functions for a speci-
fied viscoacoustic model into the vector wave equations 19, we may
derive the wave equations in differential form. The differential form
of the other vector wave equations can be obtained in a similar way.
The classic viscoacoustic models and their corresponding wave

equations are summarized in the following.

The Kelvin-Voigt model

The density-normalized relaxation functions and stiffness
coefficients for the Kelvin-Voigt model are given by

ϕijðtÞ ¼ ηð1Þij δðtÞ þmð1Þ
ij hðtÞ; (21)

aijðωÞ ¼ mð1Þ
ij − iωηð1Þij ; (22)

with

mð1Þ
ij ¼ āRij; (23)

ηij ¼
āRij

2πfcQ̄ij
; (24)

where δðtÞ denotes the Dirac delta function, hðtÞ denotes the
Heaviside step function, mð1Þ

ij denote the density-normalized elastic

stiffness coefficients corresponding to ω → 0, and ηð1Þij denote the
density-normalized viscous coefficients.
The wave equations for the Kelvin-Voigt model are given by

∂2σxx
∂t2

¼
�
mð1Þ

11 þ ηð1Þ11

∂
∂t

�
∂2σxx
∂x2

þ
�
mð1Þ

12 þ ηð1Þ12

∂
∂t

�
∂2σyy
∂y2

þ
�
mð1Þ

13 þ ηð1Þ13

∂
∂t

�
∂2σzz
∂z2

;

∂2σyy
∂t2

¼
�
mð1Þ

12 þ ηð1Þ12

∂
∂t

�
∂2σxx
∂x2

þ
�
mð1Þ

22 þ ηð1Þ22

∂
∂t

�
∂2σyy
∂y2

þ
�
mð1Þ

23 þ ηð1Þ23

∂
∂t

�
∂2σzz
∂z2

;

∂2σzz
∂t2

¼
�
mð1Þ

13 þ ηð1Þ13

∂
∂t

�
∂2σxx
∂x2

þ
�
mð1Þ

23 þ ηð1Þ23

∂
∂t

�
∂2σyy
∂y2

þ
�
mð1Þ

33 þ ηð1Þ33

∂
∂t

�
∂2σzz
∂z2

: (25)

The Maxwell model

The density-normalized relaxation functions and stiffness
coefficients for the Maxwell model are given by

ϕijðtÞ ¼ mð2Þ
ij e−m

ð2Þ
ij t∕ηð2Þij hðtÞ; (26)

aijðωÞ ¼
�

1

mð2Þ
ij

þ i

ωηð2Þij

�
−1
; (27)

with

mð2Þ
ij ¼ āRij

�
1þ 1

Q̄2
ij

�
; (28)

ηð2Þij ¼ āRij
2πfc

�
Q̄ij þ

1

Q̄ij

�
; (29)

where mð2Þ
ij denote the density-normalized elastic stiffness coeffi-

cients as ω → ∞ and ηð2Þij denote the density-normalized viscous
coefficients.
The wave equations for the Maxwell model are given by

∂2σxx
∂t2

¼mð2Þ
11

∂2σxx
∂x2

þmð2Þ
12

∂2σyy
∂y2

þmð2Þ
13

∂2σzz
∂z2

−
X3
j¼1

r1j;

∂2σyy
∂t2

¼mð2Þ
12

∂2σxx
∂x2

þmð2Þ
22

∂2σyy
∂y2

þmð2Þ
23

∂2σzz
∂z2

−
X3
j¼1

r2j;

∂2σzz
∂t2

¼mð2Þ
13

∂2σxx
∂x2

þmð2Þ
23

∂2σyy
∂y2

þmð2Þ
33

∂2σzz
∂z2

−
X3
j¼1

r3j; (30)
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where the auxiliary variables rij satisfy

ηð2Þij

∂rij
∂t

¼ ðmð2Þ
ij Þ2 ∂

2σjj
∂x2j

−mð2Þ
ij rij: (31)

Here, the indices “i” and “j” are taken as 1, 2 and 3 or x, y and z,
and the repeated indices do not satisfy the Einstein summation
convention.

The SLS model

The density-normalized relaxation functions and stiffness coef-
ficients for the SLS model are given by

ϕijðtÞ ¼ mð3Þ
ij

�
1 −

�
1 −

τij
τσ

�
e−t∕τσ

�
hðtÞ; (32)

aijðωÞ ¼ mð3Þ
ij

1 − iωτij
1 − iωτσ

; (33)

with

mð3Þ
ij ¼ āRij

�
1 −

1

Q̄ij

�
; (34)

τij ¼ τσ
Q̄ij þ 1

Q̄ij − 1
; (35)

τσ ¼
1

2πfc
; (36)

where equation 36 follows Bai et al. (2017), mð3Þ
ij denote the

density-normalized elastic stiffness coefficients corresponding to
t → ∞ or ω → 0, τij denote the strain relaxation times, and τσ
denote the stress relaxation time.
The wave equations for the SLS model are given by

∂2σxx
∂t2

¼ ζ11m
ð3Þ
11

∂2σxx
∂x2

þ ζ12m
ð3Þ
12

∂2σyy
∂y2

þ ζ13m
ð3Þ
13

∂2σzz
∂z2

− w1;

∂2σyy
∂t2

¼ ζ12m
ð3Þ
12

∂2σxx
∂x2

þ ζ22m
ð3Þ
22

∂2σyy
∂y2

þ ζ23m
ð3Þ
23

∂2σzz
∂z2

− w2;

∂2σzz
∂t2

¼ ζ13m
ð3Þ
13

∂2σxx
∂x2

þ ζ23m
ð3Þ
23

∂2σyy
∂y2

þ ζ33m
ð3Þ
33

∂2σzz
∂z2

− w3;

(37)

where wi are the auxiliary variables given by

∂w1

∂t
¼ n11

∂2σxx
∂x2

þ n12
∂2σyy
∂y2

þ n13
∂2σzz
∂z2

−
1

τσ
w1;

∂w2

∂t
¼ n12

∂2σxx
∂x2

þ n22
∂2σyy
∂y2

þ n23
∂2σzz
∂z2

−
1

τσ
w2;

∂w3

∂t
¼ n13

∂2σxx
∂x2

þ n23
∂2σyy
∂y2

þ n33
∂2σzz
∂z2

−
1

τσ
w3; (38)

and nij ¼ ðζij − 1Þmð3Þ
ij ∕τσ and ζij ¼ τij∕τσ .

The Kjartansson model

The density-normalized relaxation functions and stiffness coef-
ficients for the Kjartansson model are given by

ϕijðtÞ ¼
mð4Þ

ij

Γð1 − 2γijÞ
�
t
tc

�
−2γij

hðtÞ; (39)

aijðωÞ ¼ mð4Þ
ij

�
−iω
ωc

�
2γij

; (40)

with

γij ¼
1

π
arctan

�
1

Q̄ij

�
; (41)

mð4Þ
ij ¼ āRij secðπγijÞ; (42)

ωc ¼
1

tc
¼ 2πfc; (43)

where Γð:Þ denotes the gamma function (Arfken and Weber, 2001),
mð4Þ

ij denote the density-normalized elastic stiffness coefficients cor-
responding to γij → 0 for t > 0, and tc denotes the reference time
(Kjartansson, 1979).
The wave equations for the Kjartansson model are given by

∂2σxx
∂t2

¼ ~mð4Þ
11 D

2γ11
t

∂2σxx
∂x2

þ ~mð4Þ
12 D

2γ12
t

∂2σyy
∂y2

þ ~mð4Þ
13 D

2γ13
t

∂2σzz
∂z2

;

∂2σyy
∂t2

¼ ~mð4Þ
12 D

2γ12
t

∂2σxx
∂x2

þ ~mð4Þ
22 D

2γ22
t

∂2σyy
∂y2

þ ~mð4Þ
23 D

2γ23
t

∂2σzz
∂z2

;

∂2σzz
∂t2

¼ ~mð4Þ
13 D

2γ13
t

∂2σxx
∂x2

þ ~mð4Þ
23 D

2γ23
t

∂2σyy
∂y2

þ ~mð4Þ
33 D

2γ33
t

∂2σzz
∂z2

;

(44)

where ~mð4Þ
ij ¼ mð4Þ

ij ∕ω2γij
c andD

2γij
t denote theCaputo fractional tempo-

ral derivativesof orders2γij, givenby (Mainardi, 2010;Carcione, 2015)

D
2γij
t gðtÞ ¼ 1

Γð1 − 2γijÞ
Z

t

0

_gðτÞ
ðt − τÞ2γij dτ: (45)
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Here, g denotes a causal function of time, the dot on _g denotes the first
derivative, and γij areassumed to satisfy0 < γij < 0.5,which isvalid for
realattenuatingrocks.Adetaileddescriptionoffractionalderivativescan
be found in Podlubny (1998). In the derivation of equations 44 from
equations 19 with equation 39, we have taken into account equation 8
with property 4.

THE ACOUSTIC RADIATION FROM A
POINT SOURCE

We put a point-source term fðx; tÞ ¼ ð∂4SðtÞ∕∂t4ÞδðxÞδðyÞδðzÞ to
the right side of scalar wave equation 16, where SðtÞ is a causal signal
and δð·Þ denotes the Dirac delta function. We shall explain later why
we adopt the fourth-order derivative of the signal to describe a source
wavelet. Applying the Fourier transform to equation 16 over x, y, z
and t, we obtain the point-source solution in the frequency-
wavenumber domain,

P̂ðk;ωÞ ¼ ω4ŜðωÞ
Hðk;ωÞ ; (46)

with

Hðk;ωÞ ¼ ÂðωÞω4k21 þ B̂ðωÞω4k22 þ ĈðωÞω4k23

þ D̂ðωÞω2k21k
2
2 þ ÊðωÞω2k21k

2
3

þ F̂ðωÞω2k22k
2
3 þ ĜðωÞk21k22k23 − ω6; (47)

where k ¼ ðk1; k2; k3ÞT denotes the wavenumber vector in the Car-
tesian ðx; y; zÞ system and Â through Ĝ are given in equations 15.
The inverse Fourier transform of equation 46 over k1, k2 and k3

leads to the point-source solution in the frequency-space domain,

P̂ðx;ωÞ¼ 1

8π3

Z
∞

−∞

Z
∞

−∞

Z
∞

−∞

ω4ŜðωÞ
Hðk;ωÞe

iðk1xþk2yþk3zÞdk1dk2dk3:

(48)

We adopt Buchward’s (1959) method to derive the asymptotic ex-
pression for the integrals in equation 48. The Cartesian coordinate
ðx; y; zÞ of the observation point is identical to the spherical coor-
dinate ðr; α; βÞ, where r denotes the radial distance between the ob-
servation point and the coordinate origin, α denotes the polar angle
measured from the positive z-axis, and β denotes the azimuth mea-
sured from the positive x-axis in the ½x; y� plane. We now perform a
rotation of the Cartesian coordinate system so that the observation
point is located in the positive z 0-axis of the new Cartesian coor-
dinate system ðx 0; y 0; z 0Þ. Various ways can be adopted to realize
this aim. For example, we use the following rotation:

x ¼ Mx 0; (49)

where x and x 0 denote the coordinates of the observation point in the
Cartesian ðx; y; zÞ and ðx 0; y 0; z 0Þ coordinate systems, respectively,
and M denotes the orthogonal transformation matrix given by

M ¼
 
cos β cos α − sin β cos β sin α
sin β cos α cos β sin β sin α
− sin α 0 cos α

!
: (50)

The first, second and third columns of the matrixM describe the base
vectors along the x 0-, y 0- and z 0-axes in the Cartesian coordinate
system ðx; y; zÞ. The Cartesian coordinate systems before and after
rotation satisfy the right-hand rule. Applying the coordinate rotation,
the integrals in equation 48 reduce to

P̂ðx;ωÞ¼ 1

8π3

Z
∞

−∞

Z
∞

−∞

Z
∞

−∞

ω4ŜðωÞ
H 0ðk0;ωÞe

ik0
3
rdk01dk

0
2dk

0
3; (51)

where k 0 ¼ ðk 0
1; k

0
2; k

0
3ÞT denotes the wavenumber vector in the Car-

tesian coordinate system ðx 0; y 0; z 0Þ, and the function H 0 is given by

H 0ðk 0;ωÞ ¼ HðMk 0;ωÞ: (52)

The integral with respect to k 0
3 in equation 51 can be calculated by the

residue theorem. The residues correspond to the roots of the equation
H 0ðk 0;ωÞ ¼ 0 about k 0

3. The equation generally is a six-order alge-
braic equation with respect to k 0

3. Two roots of the equation corre-
spond to the up- and downgoing P-waves, and the remaining roots
correspond to the up- and downgoing pseudo S1- and S2-waves. The
pseudo S1- and S2-waves do not have the polarization behaviors of
the true S-waves, and their velocities are much smaller than those of
the true S-waves in an anisotropic media. Hence, the pseudo S1- and
S2-waves are useless in seismic exploration, and we may concern
ourselves with only the P-wave radiation. We use k̆ 0

3 to denote the
P-wave root in the upper (Imðk 0

3Þ > 0) of the complex k 0
3-plane. To

calculate the integral along the real k 0
3 axis in equation 51, we may

construct a contour in the complex k 0
3-plane. Because the observation

point is located in the positive z 0-axis of the new Cartesian coordinate
system, we may let the contour be composed of the real k 0

3 axis and
the infinite-radius semicircle in the upper half-space of the complex
k 0
3-plane; hence, the contour includes the pole k̆

0
3ðk 0

1; k
0
2Þ. Referring to

the residue theorem, equation 51 is rewritten as

P̂ðx;ωÞ¼ i
4π2

Z
∞

−∞

Z
∞

−∞

�
ω4ŜðωÞ

∂H 0ðk0;ωÞ∕∂k03
eik

0
3
r

�
k0
3
¼k̆03ðk01;k02Þ

×dk01dk
0
2: (53)

We next attempt to derive the asymptotic approximation for the point-
source solution. We substitute p 0

i ¼ k 0
i∕ω into equation 53 to change

the variables in the integral, where p 0
i denote the slowness compo-

nents in the Cartesian coordinate system ðx 0; y 0; z 0Þ. The point-
source solution is rewritten as

P̂ðx;ωÞ ¼ iω
4π2

Z
∞

−∞

Z
∞

−∞

�
ŜðωÞ

∂I 0ðp 0;ωÞ∕∂p 0
3

eiωp
0
3
r

�
p 0
3
¼p̆ 0

3
ðp 0

1
;p 0

2
Þ

× dp 0
1dp

0
2; (54)

where p̆ 0
3 ¼ k̆ 0

3∕ω is the function of the horizontal slowness compo-
nents p 0

1 and p 0
2 and the function I 0 is given by

I 0ðp 0;ωÞ ¼ HðMp 0ω;ωÞ∕ω6: (55)

It is noteworthy that equation I 0ðp 0;ωÞ ¼ 0 is the acoustic slowness
surface equation in an attenuating orthorhombic medium with tilted
symmetry axes (Hao and Alkhalifah, 2017a).
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We adopt the steepest-descent method to evaluate the complex
integrals in equation 54. The saddle point is determined by�

∂p̆0
3ðp0

1;p
0
2Þ

∂p0
1

�
~p0
1
; ~p0

2

¼0;

�
∂p̆0

3ðp0
1;p

0
2Þ

∂p0
2

�
~p0
1
; ~p0

2

¼0; (56)

where ~p 0
1 and ~p 0

2 denote the solution of equations 56. The vertical
slowness component is approximated by a second-order Taylor ex-
pansion at the saddle point,

p̆0
3ðp0

1;p
0
2Þ≈ ~p0

3þ
1

2

X2
i;j¼1

∂2 ~p0
3

∂ ~p0
i∂ ~p0

j
ðp0

i− ~p0
iÞðp0

j− ~p0
jÞ; (57)

where ~p 0
3 ¼ p̆ 0

3ð ~p 0
1; ~p

0
2Þ denotes the vertical slowness component

at the saddle point. The slowness ~p 0 ¼ ð ~p 0
1; ~p

0
2; ~p

0
3Þ describes the

P-wave slowness corresponding to the observation direction ðα; βÞ.
The slowness ~p 0 is determined uniquely for a given observation
direction.
In the following, we would omit arguments such as ω and x of a

function on the right side of an obtained equation for brevity. Sub-
stitution of equation 57 into equation 54 and evaluation of the in-
tegrals by the steepest-descent method (Bleistein, 2012) leads to the
point-source acoustic asymptotic solution,

P̂ðx;ωÞ≈ 1

2πr
1ffiffiffiffiffiffiffijKjp Ŝ

j∂~I 0∕∂ ~p0
3j
expð−ωArayrÞ

×expðiω r
Vray

−iνÞ; (58)

with

K ¼ det

�
∂2 ~p 0

3

∂ ~p 0
i∂ ~p 0

j

�
¼ ∂2 ~p 0

3

∂ ~p 02
1

∂2 ~p 0
3

∂ ~p 02
2

−
�

∂2 ~p 0
3

∂ ~p 0
1∂ ~p 0

2

�
2

; (59)

ν ¼ arg

�
∂~I 0

∂ ~p 0
3

�
þ 1

2
argðKÞ; (60)

Vray ¼
v2R þ v2I

vR
; Aray ¼ −

vI
v2R þ v2I

; (61)

where r denotes the radial distance between the observation posi-
tion and the coordinate origin, the explicit expression for

~I 0 ¼ I 0ð ~p 0;ωÞ can be obtained from equation 55 with equations 47
and 50, K denotes the Gaussian curvature of the slowness surface at
the saddle point, Vray and Aray denote the ray velocity and attenu-
ation, and vR þ ivI ¼ 1∕ ~p 0

3 denotes the complex group velocity
(Vavryčuk, 2007b). It is noteworthy that vR is always positive,
and vI is negative for ω > 0 and positive for ω < 0, respectively.
t ¼ r∕Vray þ irAray denotes the complex traveltime. In the inhomo-
geneous case, the complex traveltime can be calculated by numeri-
cally solving the acoustic attenuating orthorhombic eikonal
equation (Hao and Alkhalifah, 2017a).
Equation 58 describes the point-source solution valid for all

frequencies. The solution for negative frequencies (ω < 0) is iden-
tical to the complex conjugate of the solution for positive frequen-
cies (ω > 0). In the beginning of this section, we take the fourth-
order derivative of the signal SðtÞ as the source wavelet. Otherwise,
the right side of equation 58 will be multiplied by the factor 1∕ω4,
which causes a singularity at ω ¼ 0. Referring to equation 2, the
time-domain point-source solution Pðx; tÞ can be obtained by the
inverse Fourier transform of P̂ðx;ωÞ over ω.

NUMERICAL EXAMPLES

In the first example, we would compare the waveforms excited by
a point source, hereafter referred to as the point-source radiation. We
take into account the Kelvin-Voigt, Maxwell, SLS and Kjartansson
model; for brevity, we call these models frequency-dependent viscoa-
coustic models. In addition, we use a nonattenuating model and
a frequency-independent viscoacoustic model, in which the term
“frequency-independent viscoacoustic” means that the stiffness
coefficients are complex-valued but do not vary with frequency.
For all the frequency-dependent viscoacoustic models, we set the

reference frequency as fc ¼ 40 Hz. Using equations 11, we calcu-
late the density-normalized stiffness coefficients at the reference fre-
quency from the medium parameters shown in Table 1. For any
other frequency, the density-normalized stiffness coefficients are de-
termined from equations 22, 27, 33 and 40 for the Kelvin-Voigt
model, the Maxwell model, the SLS model and the Kjartansson
model, respectively. The frequency-independent viscoacoustic model
is described by the medium parameters in Table 1. The nonattenuat-
ing model is described by the velocity-related parameters (v̄P0, v̄n1,
v̄n2, η̄1, η̄2 and η̄3) in Table 1.
We take into account the scalar viscoacoustic orthorhombic wave

equation 16. The time-domain point source wavelet is obtained by

0.01 0.02 0.03 0.04 0.05 0.06
t (s)

–0.5

0.0

0.5

1.0

S (t)

Figure 1. A causal signal SðtÞ. The signal SðtÞ is the Ricker wavelet
with a dominant frequency of 40 Hz. The fourth-order derivative
of SðtÞ is used as the source wavelet in the “Numerical examples”
section.

Table 1. The medium parameters at the reference frequency
f c � 40 Hz, where the value of �AP0 corresponds to Q33 � 30.0.

v̄P0 (km∕s) v̄n1 (km∕s) v̄n2 (km∕s) η̄1 η̄2 η̄3

3.0 2.846 3.286 0.278 0.167 0.229

ĀP0 ϵ̄Q1 δ̄Q1 ϵ̄Q2 δ̄Q2 δ̄Q3

0.0167 0.66 0.52 −0.33 0.98 0.94

Note: The bar on the medium parameters corresponds to the reference frequency.
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taking the fourth-order derivative of the Ricker wavelet SðtÞ in Fig-
ure 1. We implement equation 58 to compute the frequency-domain
point-source radiation for all the considered models. The time-do-
main point-source radiation is obtained by the inverse Fourier trans-
form over the angular frequency. Figure 2 compares the point-
source radiation for the viscoacoustic models. All the waveforms
excited by the point source are similar to a Ricker wavelet. The
comprehensive effect of dispersion and frequency-dependent at-
tenuation distorts the early- and late-arrival troughs of these wave-
forms. For the frequency-independent viscoacoustic model, the
velocity, the attenuation coefficient, and the geometric spreading
do not vary with frequency. As illustrated by the black dashed lines
in Figure 2, the early- and late-arrival troughs of the waveforms
have the same amplitude in the frequency-independent viscoacous-
tic model. For other viscoacoustic models, the amplitudes of the
early-arrival troughs are larger than those of the late-arrival troughs.
This behavior is most significant for the SLS model and least sig-
nificant for the Kelvin-Voigt model. Figure 3 shows that the wave-
forms from the SLS model are similar to those from the Kjartansson
model. It is predictable that combining multiple SLS elements may
approximate the Kjartansson model. In fact, Bai and Tsvankin
(2016) demonstrate that the generalized SLS model can be used
as an alternative to simulate the constant-Q wave propagation in
viscoelastic anisotropic media. Figure 4 compares the waveforms
from the nonattenuating model and the viscoacoustic models. The
wave amplitudes from the nonattenuating model are much larger
than those from the viscoacoustic models. This indicates that attenu-
ation is an important factor causing the decay of wave amplitudes in
a viscoacoustic medium.

In the second example, we would investigate the effect of the at-
tenuation-anisotropy parameters (i.e., ϵQ1, δQ1, ϵQ2, δQ2 and δQ3) at
the reference frequency on the waveforms in a homogeneous viscoa-
coustic orthorhombic model. We use the same point source as in the
first example. Figure 5 compares the point-source radiation from the
SLS model with anisotropic wavenumber-normalized attenuation
coefficients and the corresponding model with isotropic wavenum-
ber-normalized attenuation coefficients. The attenuation-anisotropy
parameters affect the waveforms in the directions deviated from the
z-axis, and this influence is most significant in the directions close to
the x- and y-axes. According to Zhu and Tsvankin (2007), the effect
of the attenuation-anisotropy parameters on the attenuation generally
increases with the deviation of the propagation directions from the z-
axis. For the SLS model with isotropic wavenumber-normalized at-
tenuation coefficients, the wave amplitude still varies with the wave
propagation direction. Because the wavenumber-normalized attenu-
ation coefficient is isotropic in this case, it implies that the velocity
anisotropy causes the wave amplitude anisotropy. By comparing the
wave arrival times from the waveforms in these two models, we find
that the attenuation-anisotropy parameters do not affect the wave trav-
eltimes. Hence, it is impossible to estimate the attenuation anisotropy
from the traveltime data picked from a seismogram.

DISCUSSION

We present the scalar and vector viscoacoustic wave equations
for orthorhombic anisotropy with the symmetry planes orthogonal
to the Cartesian coordinate axes. Using coordinate rotations, these
viscoacoustic wave equations can be extended to the case of tilted
TI and orthorhombic anisotropies.
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Figure 2. The point-source radiation in the viscoacoustic orthorhombic models. All the waveforms are observed at the propagation distance
r ¼ 1 km. The terms α and β denote the polar and azimuthal angles of the observation direction. The polar angle is measured from the z-axis,
and the azimuthal angle is measured from the x-axis in the [x, y] plane. The red, blue, orange, green and black dashed lines correspond to the
Kelvin-Voigt, Maxwell, SLS, Kjartansson and frequency-independent viscoacoustic orthorhombic models. For the Kelvin-Voigt, Maxwell,
SLS and Kjartansson models, the medium parameters at the reference frequency are shown in Table 1. The medium parameters for the fre-
quency-independent viscoacoustic model are the same as the parameters shown in Table 1. The signal SðtÞ in Figure 1 is used to obtain the
source wavelet for all these models.
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The proposed viscoacoustic wave equations 16, 18, 19 and 20
are naturally classified as the integral-differential equation. Directly
solving these viscoacoustic wave equations is computationally costly
due to the time convolution. In the “Viscoacoustic orthorhombic
models and the corresponding wave equations” section, we obtain

the differential form of vector viscoacoustic wave equations 19
for the classic viscoacoustic models (i.e., the Kelvin-Voigt, Maxwell,
SLS and Kjartansson models). As mentioned in that section, the other
vector viscoacoustic wave equations can also be rewritten into the
differential form for these viscoacoustic models. In fact, these vector
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Figure 3. A comparison between the point-source radiation from the SLS and Kjartansson models. The orange and green lines correspond to
the SLS and Kjartansson models, respectively. These lines are the same as those in Figure 2.
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Figure 4. A comparison of the point-source radiation from the nonattenuating orthorhombic model and the viscoacoustic orthorhombic mod-
els. All the waveforms are observed at the propagation distance r ¼ 1 km. The terms α and β denote the polar and azimuthal angles of the
observation direction. The parameters of the viscoacoustic orthorhombic models at the reference frequency are shown in Table 1. The cyan
lines correspond to the nonattenuating model. The other colored lines are the same as those in Figure 2. The signal SðtÞ in Figure 1 is used to
obtain the source wavelet for all these models.
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wave equations in differential form are generally easy to solve. Only
wave equations 44 for the Kjartansson model are relatively compli-
cated because of the fractional derivatives with respect to time. How-
ever, as suggested by Carcione et al. (2002), the fractional derivatives
can be calculated by the Grunwald-Letnikov approximation and the
central-difference approximation. Wave equations 44 can be solved
numerically by analogy with Carcione et al. (2002) and Zhu (2017).
Except for viscoacoustic models with power-law-type relaxation

functions (e.g., the Kjartansson model), it is generally difficult to ob-
tain the differential form of the scalar viscoacoustic wave equation 16.
As illustrated in equation 16 with equations 17, the scalar viscoacous-
tic wave equation involves the multiple Riemann-Stieltjes convolu-
tion integral. For the Kelvin-Voigt, Maxwell and SLSmodels, it is not
easy to introduce auxiliary variables to transform the scalar viscoa-
coustic wave equation into its differential form. For power-law-
type models such as the Kjartansson model, the Riemann-Stieltjes
convolution integral can be written as a fractional derivative multi-
plied by a constant coefficient, as illustrated in the wave equations 44.
Hence, a multiple Riemann-Stieltjes convolution integral can be ex-
pressed in terms of a product of the fractional derivatives correspond-
ing to each single integral, which can be combined into a single
fractional derivative according to the composition rule of fractional
derivatives (Podlubny, 1998). Finally, we may obtain the scalar vis-
coacoustic wave equation with fewer fractional derivatives.
We only present the asymptotic point-source solution for the scalar

viscoacoustic wave equation. For vector wave equations 18–20, the
unknown quantities are the particle displacement, the normal stresses
and the momentum density (or the normal stresses), respectively. We
may also adopt the asymptotic approximation to derive the point-
source solution for these vector wave equations. In this case, we need
to formulate Christoffel-style equations to determine the polarization

vectors for the unknown quantities. These polarization vectors cor-
respond to the plane-wave solution of these vector wave equations
without a source. The exact point-source solution is expressed as
a superposition of all plane waves with different amplitudes, polar-
izations, phases, and propagation directions. We may next use the
asymptotic approximation shown in this paper to derive the point-
source radiation for the vector wave equations. Similar treatment
for viscoelastic anisotropic media can be found in Vavryčuk (2007a)
and Shekar and Tsvankin (2014).

CONCLUSIONS

The viscoacoustic wave equations in the scalar and vector forms
are derived under the acoustic approximation (i.e., the S-wave
frequency-dependent velocity parameter vS0 equals zero) for a vis-
coacoustic orthorhombic medium. All these viscoacoustic wave
equations do not rely on a specified viscoacoustic model and can
reduce to the ones for a nonattenuating orthorhombic medium.
For the Kelvin-Voigt, Maxwell, SLS and Kjartansson models, the
differential form of the vector wave equations can be obtained by
introducing auxiliary variables. It is predictable that the vector wave
equations are applicable for more complicated viscoacoustic models
such as the generalized SLS model.
As an approximation, the acoustic asymptotic point-source

solution of the scalar viscoacoustic orthorhombic wave equation de-
scribes the acoustic wavefield at a far propagation distance. The
point-source solution demonstrates that attenuation due to energy
absorption is an unignorable factor decaying wave amplitudes in
attenuating media. For a frequency-dependent viscoacoustic model,
the point-source solution also shows that the late-arrival trough of a
waveform excited by a Ricker-wavelet point source is decayed more
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Figure 5. A comparison of the point-source radiation from two viscoacoustic models. One (corresponding to the orange lines) is the SLS model
with anisotropic wavenumber-normalized attenuation coefficients, and the model parameters are shown in Table 1. The other one (corresponding
to the gray lines) is a similar model but with isotropic wavenumber-normalized attenuation coefficients (ϵQ1 ¼ δQ1 ¼ ϵQ2 ¼ δQ2 ¼ δQ3 ¼ 0).
All the waveforms are observed at the propagation distance r ¼ 1 km. The terms α and β denote the polar and azimuthal angles of the observation
direction. The signal SðtÞ in Figure 1 is used to obtain the source wavelet for both models.
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significantly than the early-arrival trough. The effect of the attenu-
ation-anisotropy parameters on the acoustic waveforms generally
increases with the deviation of the propagation direction from the
vertical axis. The attenuation-anisotropy parameters do not affect
the arrival times of the waves in a viscoacoustic orthorhombic
medium.
We will take into account the numerical implementation of the

viscoacoustic wave equations in future papers.
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APPENDIX A

PARAMETERIZATION OF AN ACOUSTIC
ATTENUATING ORTHORHOMBIC MEDIUM

As illustrated in the main text, we use the modified Alkhalifah’s
(2003) and Zhu and Tsvankin’s (2007) notations to describe an acous-
tic attenuating orthorhombic medium. The symmetry planes of the
medium are orthogonal to the coordinate axes. Let ρ denote the den-
sity, cij ¼ cRij − isgnðωÞcIij denote the complex-valued stiffness coef-
ficients, and Qij ¼ cRij∕cIij denote the elements of the quality factor
matrix. Note that the minus sign in front of i is the opposite of the
definition of the stiffness coefficients by Zhu and Tsvankin (2007)
due to the different conventions for the Fourier transform over t. The
parameterization of an acoustic attenuating orthorhombic medium is
shown as follows:

1) vP0: The velocity of the vertically propagating P-wave

vP0 ≡

ffiffiffiffiffiffiffi
cR33
ρ

s
: (A-1)

2) vn1 and η1: The NMO-velocity and anellipticity defined in the
½y; z� symmetry plane (where the subscript “1” denotes the x-axis
normal to the plane)

vn1≡vP0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2δ1

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcR23Þ2þ2cR23c

R
44þcR33c

R
44

ρðcR33−cR44Þ

s
; (A-2)

η1≡
ϵ1−δ1
1þ2δ1

¼ cR22ðcR33−cR44Þ
2½ðcR23Þ2þ2cR23c

R
44þcR33c

R
44�

−
1

2
; (A-3)

where ϵ1 and δ1 denote the Thomsen-style velocity-anisotropy
parameters defined in the ½y; z� plane (Tsvankin, 1997).

3) vn2 and η2: The NMO-velocity and anellipticity defined in the
½x; z� symmetry plane (where the subscript “2” denotes the
y-axis normal to the plane)

vn2≡vP0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2δ2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcR13Þ2þ2cR13c

R
55þcR33c

R
55

ρðcR33−cR55Þ

s
; (A-4)

η2≡
ϵ2−δ2
1þ2δ2

¼ cR11ðcR33−cR55Þ
2½ðcR13Þ2þ2cR13c

R
55þcR33c

R
55�

−
1

2
; (A-5)

where ϵ2 and δ2 denote the Thomsen-style velocity-anisotropy
parameters defined in the ½x; z� plane (Tsvankin, 1997).

4) η3: The anellipticity defined in the ½x; y� symmetry plane (where
the subscript “3” denotes the z-axis normal to the plane)

η3 ≡
ϵ1 − ϵ2 − δ3ð1þ 2ϵ2Þ
ð1þ 2ϵ2Þð1þ 2δ3Þ

¼ cR22ðcR11 − cR66Þ
2½ðcR12Þ2 þ 2cR12c

R
66 þ cR11c

R
66�

−
1

2
; (A-6)

where δ3 denotes the Thomsen-style velocity-anisotropy param-
eters defined in the ½x; y� plane (Tsvankin, 1997). The definition
of η3 in equation A-6 follows Grechka and Tsvankin (1999).

5) AP0: The wavenumber-normalized attenuation coefficient of the
vertically propagating P-wave

AP0 ≡Q33

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

Q2
33

s
− 1

!
: (A-7)

6) ϵQ1 and δQ1: The Thomsen-style parameters for attenuation
anisotropy defined in the ½y; z� symmetry plane

ϵQ1 ≡
Q33 −Q22

Q22

; (A-8)

δQ1 ≡
Q33−Q44

Q44
cR44

ðcR
23
þcR

33
Þ2

cR
33
−cR

44

þ 2 Q33−Q23

Q23
cR23ðcR23 þ cR44Þ

cR33ðcR33 − cR44Þ
:

(A-9)

7) ϵQ2 and δQ2: The Thomsen-style parameters for attenuation
anisotropy defined in the ½x; z� symmetry plane

ϵQ2 ≡
Q33 −Q11

Q11

; (A-10)

δQ2 ≡
Q33−Q55

Q55
cR55

ðcR
13
þcR

33
Þ2

cR
33
−cR

55

þ 2 Q33−Q13

Q13
cR13ðcR13 þ cR55Þ

cR33ðcR33 − cR55Þ
:

(A-11)
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8) δQ3: The Thomsen-style parameter for attenuation anisotropy
defined in the ½x; y� symmetry plane

δQ3 ≡
Q11−Q66

Q66
cR66

ðcR
11
þcR

12
Þ2

cR
11
−cR

66

þ 2 Q11−Q12

Q12
cR12ðcR12 þ cR66Þ

cR11ðcR11 − cR66Þ
:

(A-12)

All the above attenuation-anisotropy parameters are not
applicable to the limit case Qij ¼ ∞.

APPENDIX B

DERIVATION OF THE VECTOR VISCOACOUSTIC
WAVE EQUATIONS

In this appendix, we show the derivation of the vector viscoacous-
tic wave equations 18 and 19. As mentioned in the “Viscoacoustic
orthorhombic wave equations” section, we take into account the
acoustic approximation (vS0 ¼ 0) for the stiffness coefficients in all
frequencies. As a result, the stiffness coefficients c44ðωÞ, c55ðωÞ and
c66ðωÞ are always zero, which leads to the corresponding relaxation
functions ψ44ðtÞ ¼ ψ55ðtÞ ¼ ψ66ðtÞ ¼ 0.
The relation between the strain eij and the particle displacement

ui is given by

exx ¼
∂ux
∂x

; eyy ¼
∂uy
∂y

; ezz ¼
∂uz
∂z

: (B-1)

The constitutive equation is written as

σxx ¼ ψ11⊙exx þ ψ12⊙eyy þ ψ13⊙ezz;

σyy ¼ ψ12⊙exx þ ψ22⊙eyy þ ψ23⊙ezz;

σzz ¼ ψ13⊙exx þ ψ23⊙eyy þ ψ33⊙ezz; (B-2)

where σij and ψ ij denote the stress components and the relaxation
functions, respectively.
The equation of motion is

ρ
∂2ux
∂t2

¼ ∂σxx
∂x

;

ρ
∂2uy
∂t2

¼ ∂σyy
∂y

;

ρ
∂2uz
∂t2

¼ ∂σzz
∂z

; (B-3)

where ρ denotes the density.
Substituting equations B-2 and B-1 successively into equations B-3

leads to the viscoacoustic wave equations in terms of the particle
displacement,

∂2ux
∂t2

¼ ϕ11⊙ ∂2ux
∂x2

þ ϕ12⊙ ∂2uy
∂x∂y

þ ϕ13⊙ ∂2uz
∂x∂z

;

∂2uy
∂t2

¼ ϕ12⊙ ∂2ux
∂x∂y

þ ϕ22⊙ ∂2uy
∂y2

þ ϕ23⊙ ∂2uz
∂y∂z

;

∂2uz
∂t2

¼ ϕ13⊙ ∂2ux
∂x∂z

þ ϕ23⊙ ∂2uy
∂y∂z

þ ϕ33⊙ ∂2uz
∂z2

; (B-4)

where ϕij ¼ ψ ij∕ρ denote the density-normalized relaxation
functions.
Taking the second-order derivative of equations B-2 with respect

to time and substituting equations B-1 and B-3, we derive the vis-
coacoustic wave equations in terms of the normal stresses,

∂2σxx
∂t2

¼ ϕ11⊙ ∂2σxx
∂x2

þ ϕ12⊙ ∂2σyy
∂y2

þ ϕ13⊙ ∂2σzz
∂z2

;

∂2σyy
∂t2

¼ ϕ12⊙ ∂2σxx
∂x2

þ ϕ22⊙ ∂2σyy
∂y2

þ ϕ23⊙ ∂2σzz
∂z2

;

∂2σzz
∂t2

¼ ϕ13⊙ ∂2σxx
∂x2

þ ϕ23⊙ ∂2σyy
∂y2

þ ϕ33⊙ ∂2σzz
∂z2

: (B-5)

Here, we have assumed eijðx; 0Þ ¼ 0 and _eijðx; 0Þ ¼ 0 to use the
following property:

∂2

∂t2
ðϕij⊙ejjÞ ¼ ϕij⊙ ∂2ejj

∂t2
; (B-6)

where the dot on _eij denotes the first temporal derivative, and the
repeated indices do not satisfy the Einstein summation convention.
The derivation of the above property is shown in Appendix C.

APPENDIX C

DERIVATION OF EQUATION B-6

This appendix derives equation B-6 in the case that the density-
normalized relaxation functions are bounded when the time ap-
proaches zero from the positive time axis, that is, jϕijð0þÞj < ∞.
In the case of jϕijð0þÞj ¼ ∞ for the Kjartansson model, we only
need to disregard the term including ϕijð0þÞ in the Riemann-
Stieltjes convolution integral by referring to equation 8, and the der-
ivation can be accomplished in a similar way.
By change of variables in integral, equation 7 is rewritten as

ψ ijklðtÞ⊙eklðx; tÞ ¼ ψ ijklð0þÞeklðx; tÞ

þ
Z

t

0

_ψ ijklðτÞeklðx; t − τÞdτ: (C-1)

Taking account of equation C-1, the first derivative of ϕij⊙ejj
with respect to t is written as

∂
∂t
ðϕij⊙ejjÞ¼ϕijð0þÞ_ejjðx;tÞþ

∂
∂t

Z
t

0

_ϕijðτÞejjðx;t−τÞdτ

¼ϕijð0þÞ_ejjðx;tÞþ _ϕijðtÞejjðx;0Þ

þ
Z

t

0

_ϕijðτÞ_ejjðx;t−τÞdτ; (C-2)
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where the dot on _ejj denotes the first derivative of ejj with
respect to t.
Because no initial strain exists in the medium, we may assume

eijðx; 0Þ ¼ 0 so that

∂
∂t
ðϕij⊙ejjÞ ¼ ϕijð0þÞ_ejjðx; tÞ þ

Z
t

0

_ϕijðτÞ_ejjðx; t − τÞdτ:
(C-3)

Taking the first derivative of equation C-3 with respect to t and
further assuming _ejjðx; 0Þ ¼ 0, we derive the following property:

∂2

∂t2
ðϕij⊙ejjÞ¼ϕijð0þÞëjjðx;tÞþ

Z
t

0

_ϕijðτÞëjjðx;t−τÞdτ;
(C-4)

where the double dots on ëjj denotes the second-order derivative of
ejj with respect to t.
Referring to equation C-1, the property can be written in a com-

pact form as

∂2

∂t2
ðϕij⊙ejjÞ ¼ ϕij⊙ ∂2ejj

∂t2
: (C-5)

APPENDIX D

VISCOACOUSTIC WAVE EQUATIONS FOR
TRANSVERSE ISOTROPY

For a viscoacoustic VTI medium, we use the following medium
parameters: vP0, vn, η, AP0, ϵQ and δQ. The meaning of these param-
eters can be known by analogy with that of the similar parameters
defined in the ½x; z� plane of an attenuating orthorhombic medium in
Appendix A.
Taking into account the relation between acoustic VTI and

orthorhombic anisotropies, we simplify equation 11 and obtain the
nonzero density-normalized VTI stiffness parameters:

a11 ¼ a12 ¼ a22 ¼ v2n½1 − 2ikQð1þ ϵQÞ�ð1þ 2ηÞ;

a13 ¼ a23 ¼ vP0vnð1 − 2ikQÞ − ikQδQ
v3P0
vn

;

a33 ¼ v2P0ð1 − 2ikQÞ; (D-1)

where kQ is given in equation 12.
Using these density-normalized stiffness coefficients, we may

obtain the density-normalized VTI relaxation functions for the
viscoacoustic models shown in the “Viscoacoustic orthorhombic
models and the corresponding wave equations” section. The den-
sity-normalized relaxation functions for a viscoacoustic VTI medium
satisfy

ϕ11ðtÞ ¼ ϕ12ðtÞ ¼ ϕ22ðtÞ; ϕ13ðtÞ ¼ ϕ23ðtÞ: (D-2)

Using equation D-1, we simplify the orthorhombic dispersion re-
lation (equation 14) and finally obtain the VTI dispersion relation
(Hao and Alkhalifah, 2017b). Implementing the inverse Fourier

transform to the VTI dispersion relation, we derive the scalar
viscoacoustic VTI wave equation:

∂4P
∂t4

¼ ϕ11⊙
�

∂4P
∂t2∂x2

þ ∂4P
∂t2∂y2

�
þ ϕ33⊙ ∂4P

∂t2∂z2

þ ðϕ13⊙ϕ13 − ϕ11⊙ϕ33Þ⊙
�

∂4P
∂x2∂z2

þ ∂2P
∂y2∂z2

�
:

(D-3)

Taking equation D-2 into account, we may simplify the vector
viscoacoustic orthorhombic wave equations 18–20. Finally, the
vector viscoacoustic VTI wave equation are as follows.
The wave equations in terms of the particle displacement are

given by

∂2ux
∂t2

¼ ϕ11⊙ ∂2ux
∂x2

þ ϕ11⊙ ∂2uy
∂x∂y

þ ϕ13⊙ ∂2uz
∂x∂z

;

∂2uy
∂t2

¼ ϕ11⊙ ∂2ux
∂x∂y

þ ϕ11⊙ ∂2uy
∂y2

þ ϕ13⊙ ∂2uz
∂y∂z

;

∂2uz
∂t2

¼ ϕ13⊙ ∂2ux
∂x∂z

þ ϕ13⊙ ∂2uy
∂y∂z

þ ϕ33⊙ ∂2uz
∂z2

; (D-4)

where u ¼ ðux; uy; uzÞT denotes the particle displacement.
The wave equations in terms of the normal stresses are given by

∂2σhh
∂t2

¼ ϕ11⊙
�
∂2σhh
∂x2

þ ∂2σhh
∂y2

�
þ ϕ13⊙ ∂2σzz

∂z2
;

∂2σzz
∂t2

¼ ϕ13⊙
�
∂2σhh
∂x2

þ ∂2σhh
∂y2

�
þ ϕ33⊙ ∂2σzz

∂z2
; (D-5)

where σhh ¼ σxx ¼ σyy denotes the horizontal normal stress.
The wave equations in terms of the momentum density and the

normal stresses are given by

∂Jx
∂t

¼ ∂σhh
∂x

;

∂Jy
∂t

¼ ∂σhh
∂y

;

∂Jz
∂t

¼ ∂σzz
∂z

;

∂σhh
∂t

¼ ϕ11⊙ ∂Jx
∂x

þ ϕ11⊙ ∂Jy
∂y

þ ϕ13⊙ ∂Jz
∂z

;

∂σzz
∂t

¼ ϕ13⊙ ∂Jx
∂x

þ ϕ13⊙ ∂Jy
∂y

þ ϕ33⊙ ∂Jz
∂z

; (D-6)

where J ¼ ðJx; Jy; JzÞT is the momentum density (J ¼ ρ∂u∕∂t)
according to Auld (1973).
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