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S U M M A R Y
The generalized standard-linear-solid model, also called the Zener model, is widely used in
viscoacoustic/viscoelastic wavefield forward and inverse modelling because the wave equa-
tions in this model can be written in differential equation form, which can be solved efficiently
by time-domain numerical methods such as finite-difference method, spectral element method,
etc. For this model, however, two different expressions for the relaxation function (or complex
modulus) appear in the literature somewhat confusingly. In addition to this confusion, the time-
and frequency-domain versions of the wave equations for the generalized standard-linear-solid
model are scattered throughout the literature. Here, we revisit the generalized standard-linear-
solid model and seek to overcome the confusion concerning the expression for the relaxation
function (or modulus). We present a unified approach to derive the viscoacoustic wave equa-
tions. We start with the time- and frequency-domain formulations separately to derive two
sets of viscoacoustic wave equations. All these viscoacoustic wave equations are expressed in
a simple and compact form. The two sets of viscoacoustic wave equations are equivalent to
each other. The proposed method to derive the appropriate viscoacoustic wave equations can
be extended to derive wave equations for other dissipative media.

Key words: Elasticity and anelasticity; Acoustic properties; Computational seismology;
Seismic attenuation; Wave propagation.

1 I N T RO D U C T I O N

Incorporation of attenuation and dispersion into the seismic wave
equation is needed to properly describe wave propagation in the
near-surface zone of the Earth. The viscoacoustic wave equa-
tion is widely employed for forward and inverse modelling prob-
lems in seismology. The constitutive equation for a viscoacous-
tic/viscoelastic medium is generally expressed by a Riemann–
Stieltjes convolution integral in mathematics (Apostol 1974). How-
ever, such an integral limits the application of the viscoacous-
tic/viscoelastic wave equation, because calculating the convolution
integral requires the complete time history of the wavefield, which
increases significantly the computational cost.

The standard-linear-solid (SLS) model (also called the Zener
model) is a classic mechanical representation of anelastic
behaviour—it comprises a series combination of a spring and a
Kelvin–Voigt solid (Fig. 1a) or a parallel combination of a spring
and a Maxwell solid (Fig. 2a). The dispersion and attenuation are
characterized by the phase velocity and dissipation factor (i.e. the
inverse of quality factor), respectively. In a 1-D SLS model, the
phase velocity increases with frequency and reaches its minimum
and maximum values at zero and infinite frequencies, respectively,

whereas the dissipation factor is bell-shaped with the maximum
value at a specific frequency determined by the stress and strain
relaxation times, and is zero at both zero and infinite frequency. The
quantitative description of the phase velocity and dissipation factor
can be found in Carcione (2014).

The generalized SLS model comprises multiple such SLS el-
ements in parallel (Figs 1b and 2b) and is widely used to simu-
late the nearly constant Q behaviour of rocks (e.g. Emmerich &
Korn 1987; Blanch et al. 1995; Blanc et al. 2016). The viscoa-
coustic/viscoelastic wave equation based on the generalized SLS
model can be written in differential equation form, which can be
effectively solved by many time-domain numerical methods such
as the finite-difference method (e.g. Carcione et al. 1988b) and
the spectral-element method (e.g. Komatitsch & Tromp 1999). A
detailed introduction to time-domain numerical methods for wave
equations can be found in Carcione et al. (2002) and Igel (2017).
However, the geophysical literature shows two different expres-
sions for the relaxation function (or modulus) in the generalized
SLS model. The first expression can be found in, for example, Liu
et al. (1976), Carcione et al. (1988a,b,c), Blanch et al. (1995) and
Komatitsch & Tromp (1999). Compared with the first expression,
the second expression has an extra factor 1/N outside the summation
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Figure 1. The Kelvin representation of the SLS model and its generalization. Diagram (a) shows the SLS model as a series combination of a Kelvin–Voigt
solid and a spring. Diagram (b) shows the generalized SLS model as a parallel combination of multiple SLS elements. In diagram (a), ε and σ denote the total
strain and stress, respectively, ε1 and k denote the strain and modulus of the single spring, respectively, ε2 and η denote the strain and viscosity of the dashpot,
respectively, and k

′
denotes the modulus of the spring in the Kelvin–Voigt solid. The meaning of the symbols in diagram (b) is similar to that in diagram (a),

and the subscripts denote the indexed SLS elements.
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Figure 2. The Maxwell representation of the SLS model and its generalization. Diagram (a) shows the SLS model as a parallel combination of a Maxwell
solid and a spring. Diagram (b) shows the generalized SLS model as a parallel combination of multiple SLS elements. In diagram (a), ε and σ denote the total
strain and stress, respectively, ε1 and k

′
denote the strain and modulus of the spring in the Maxwell solid, respectively, ε2 and η denote the strain and viscosity

of the dashpot in the Maxwell solid, respectively, and k denotes the modulus of the single spring. The meaning of the symbols in diagram (b) is similar to that
in diagram (a), and the subscripts denote the indexed SLS elements.

term. The second expression can be found in, for example, Casula
& Carcione (1992), Carcione (2014) and Bai & Tsvankin (2016).
More confusingly, the parameter τεl in both expressions is assigned
the same meaning in the references mentioned above.

The aim of this paper is to unify the expressions for the relax-
ation function and modulus for the generalized SLS model, and de-
rive the corresponding viscoacoustic wave equations in differential-
equation form from a unified perspective. For the generalized SLS
model, we show two forms of the modulus and relaxation function,
of which the relaxed modulus and relaxation times are related to the
mechanical properties of the SLS elements. In this way, we link the
existing two expressions for the generalized SLS relaxation func-
tion together and demonstrate their equivalence. For the generalized
SLS model, we then derive two sets of viscoacoustic wave equa-
tions in differential-equation form. Each set includes three different
viscoacoustic wave equations. We also demonstrate that the two

sets of viscoacoustic wave equations can be derived from the time-
and frequency-domains separately, and they are equivalent to each
other.

The key to derive the viscoacoustic/viscoelastic wave equations
in differential equation form for the generalized SLS model is to
transform the constitutive equations into differential equation form.
Carcione et al. (1988a,b) started with the time-domain constitutive
equation to derive the viscoacoustic wave equation in differential
equation form. Carcione et al. (1988c) used a similar method to
derive the viscoelastic wave equation in differential equation form.
By contrast, Emmerich & Korn (1987) started with the frequency-
domain constitutive equation and derived the viscoacoustic wave
equation in differential equation form. Dhemaied et al. (2011)
worked in the frequency-domain but derived an alternative vis-
coelastic isotropic wave equation in differential equation form. A
frequency-domain approach was chosen by Hao & He (2013) who
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showed two different forms of the viscoelastic orthorhombic wave
equations for fractured media.

Since we need to switch freely between the time- and frequency-
domain, we begin by defining the Fourier transform and its inverse.
The Fourier transform of a temporal signal f(t) is written as

f̂ (ω) =
∫ ∞

−∞
f (t)eiωt dt, (1)

where t is time and ω is angular frequency.
The inverse Fourier transform of the frequency-domain signal

f̂ (ω) is written as

f (t) = 1

2π

∫ ∞

−∞
f̂ (ω)e−iωt dω. (2)

It is noteworthy that the above definition of the Fourier transform
and its inverse is consistent with the ones in Cerveny (2001, eq.
A.1.2) and Hudson (1980, eq. 9.44), but different from the ones
in Carcione et al. (1988a,b,c). For our definition, the first temporal
derivative ‘d/dt’ corresponds to ‘−iω’ in the frequency domain.
As a result, the imaginary part of a complex stiffness coefficient
in a viscoacoustic/viscoelastic medium is negative for a positive
frequency, but it will be convenient to study the seismic rays in
such a medium, because the imaginary part of complex traveltimes
is always positive for positive frequencies (e.g. Cerveny & Psencik
2009; Hao & Alkhalifah 2017a,b).

In this paper, we assume the medium density to be constant so
that we may obtain simple expressions for the viscoacoustic wave
equations. For notational convenience, we do not show the spatial
coordinates as arguments of the relaxation function or the bulk
modulus, but our result is valid for the generalized SLS models
with heterogeneous velocities and relaxation times.

2 T H E G E N E R A L I Z E D S L S M O D E L

In this section, we show the Kelvin–Voigt and Maxwell represen-
tations of the SLS model and its generalization. We start with the
configurations comprising springs and a dashpot to relate their me-
chanical properties to the parameters of the SLS model.

For convenience, we assume that the stress and strain are one-
dimensional, bounded and causal. We also assume that the stress
and strain are zero at time t = 0 and vary smoothly with time so
that we do not need to consider the initial condition when taking
into account the frequency-domain response. It is noteworthy that
the two representations are not the only choices to describe the SLS
model.

2.1 The SLS model

The time-domain constitutive equation for a one-dimensional vis-
coelastic model is written as (Gurtin & Sternberg 1962; Hudson
1980)

σ (t) =
∫ t

−∞
ψ(t − τ )dε(τ )

= ψ(0+)ε(t) +
∫ t

0
ψ̇(t − τ )ε(τ )dτ,

(3)

where σ and ε denote the stress and strain, respectively, both of
which are bounded and causal. ψ denotes the relaxation function
and the dot on ψ̇ denotes the first temporal derivative. The term ψ(0
+ ) means the right-hand limit of the function ψ at zero time.

Performing the Fourier transform of the above equation, we derive
the frequency-domain constitutive relation:

σ̂ = M ε̂, (4)

where M denotes the complex modulus given by

M(ω) = ψ(0+) +
∫ ∞

0
ψ̇(t)eiωt dt. (5)

The relaxation function for the SLS model is (Carcione 2014)

ψ(t) = MR

[
1 −

(
1 − τε

τσ

)
e− t

τσ

]
H (t), (6)

where H(t) denotes the Heaviside function.
Substituting eq. (6) into eq. (5) leads to the modulus for the SLS

model:

M(ω) = MR
1 − iωτε

1 − iωτσ

, (7)

where MR denotes the relaxed modulus at zero frequency, τ ε and
τ σ denote the strain and stress relaxation times, respectively. It is
noteworthy that the minus sign in front of the imaginary unit i
in the above equation corresponds to the definition of the Fourier
transform (eq. 1).

In the following subsections, we utilize two classic mechanical
representations to describe the SLS model and determine the relaxed
modulus and the relaxation times.

2.1.1 The Kelvin–Voigt representation

As illustrated in Fig. 1(a), the Kelvin–Voigt representation com-
prises a series combination of a single spring and a Kelvin–Voigt
solid. For the single spring, its modulus, stress and strain are de-
noted by k, σ 1 and ε1, respectively. For the Kelvin–Voigt solid, the
modulus and viscosity of the spring and dashpot are denoted by k

′

and η, respectively, and the spring and dashpot have the same strain
denoted by ε2. The stress acting on the single spring is equal to that
acting on the Kelvin–Voigt solid. The total strain is equal to the sum
of the strains of the single spring and the Kelvin–Voigt solid. From
the above conditions, we obtain the following equations:

σ = kε1 = η
dε2

dt
+ k ′ε2,

ε = ε1 + ε2.

(8)

We transform eqs (8) into the frequency-domain and take into ac-
count the frequency-domain constitutive eq. (4) and the modulus
expression (7). It follows that the relaxed modulus and the relax-
ation times are given by

MR = kk ′

k + k ′ ,

τε = η

k ′ ,

τσ = η

k + k ′ .

(9)

2.1.2 The Maxwell representation

As shown in Fig. 2(a), the Maxwell representation comprises a
parallel combination of a single spring and a Maxwell solid. The
modulus of the single spring is denoted by k and the modulus
and viscosity of the spring and dashpot in the Maxwell solid are
denoted by k

′
and η, respectively. The strain of the spring is the

same as that of the Maxwell solid. In the Maxwell solid, the stress
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acting on the spring is equal to that acting on the dashpot. The
total stress is equal to the sum of the stresses acting on the spring
and the Maxwell solid. The total strain is equal to the sum of
the strains of the spring and dashpot in the Maxwell solid. De-
scribing mathematically the above conditions leads to the following
equations:

σ = kε + k ′ε1,

k ′ε1 = η
dε2

dt
,

ε = ε1 + ε2.

(10)

Similar to the derivation of eqs (9), we derive from the above equa-
tions the relaxed modulus and relaxation times for the Maxwell
representation,

MR = k,

τε = η
k + k ′

kk ′ ,

τσ = η

k ′ .

(11)

2.1.3 The properties of the relaxed modulus and relaxation times

From eqs (9) and (11), we make the following observa-
tions. For the Kelvin–Voigt and Maxwell representations of
the SLS model, the relaxed modulus only depends on the
moduli of the springs, whereas the dashpot only affects
the stress and strain relaxation times; the strain relaxation
time is always larger than the stress relaxation time, that
is τ ε > τσ .

2.2 The generalized SLS model

Figs 1(b) and 2(b) show that the generalized SLS model can be
obtained by a parallel combination of multiple SLS elements. The
total stress is equal to the sum of the stresses acting on these SLS
elements. Hence, the modulus for the generalized SLS model com-
prising L elements can be written as

M(ω) =
L∑

l=1

MRl

1 − iωτεl

1 − iωτσl

, (12)

where index l denotes the lth mechanism, and the expressions for
MRl , τεl and τσl are given by eq. (9) for the Kelvin–Voigt represen-
tation and by eq. (11) for the Maxwell representation.

2.2.1 The first form of the relaxed modulus and relaxation function

We rewrite the modulus (12) in the first form:

M(ω) = MR

(
1 − L +

L∑
l=1

1 − iωτ̃εl

1 − iωτσl

)
, (13)

with

MR =
L∑

l=1

MRl (14)

and

τ̃εl = MRl

MR
τεl +

(
1 − MRl

MR

)
τσl . (15)

As shown in eq. (15), the effective strain relaxation time τ̃εl describes
the weighted average of the lth strain and stress relaxation times,
where the weight MRl /MR is always less than one for L > 1. Because
for an SLS element τεl > τσl (see Section 2.1.3), we obtain τ̃εl > τσl .

For the SLS model, we know the corresponding relation between
ψ(t) (eq. 6) and M(ω) (eq. 7). For the generalized SLS model
comprising multiple SLS elements, its relaxation function is a su-
perposition of the relaxation functions of all these SLS elements.
By analogy with the corresponding relation for the SLS model, for
the generalized SLS model, the relaxation function corresponding
to the relaxed modulus (eq. 12) is written as

ψ(t) =
L∑

l=1

MRl

⎡
⎢⎣1 −

(
1 − τεl

τσl

)
e
−

t

τσl

⎤
⎥⎦ H (t). (16)

From eq. (15), we can obtain the expression for τεl in terms
of τ̃εl . Furthermore, we substitute this expression into eq. (16)
and take into account eq. (14). After some algebraic manip-
ulations, we finally obtain the first form of the relaxation
function:

ψ(t) = MR

⎡
⎢⎣1 −

L∑
l=1

(
1 − τ̃εl

τσl

)
e
−

t

τσl

⎤
⎥⎦ H (t). (17)

2.2.2 The second form of the relaxed modulus and relaxation
function

The relaxed modulus (12) is rewritten in the second form as:

M(ω) = MR

L

L∑
l=1

1 − iωτ̃ ′
εl

1 − iωτσl

, (18)

with

τ̃ ′
εl

= τσl + MRl

M R

(τεl − τσl ). (19)

where M R denotes the average relaxed modulus given by

M R = 1

L

L∑
l=1

MRl . (20)

Eq. (19) indicates that τ̃ ′
εl

describes the summation of the lth stress
relaxation time and the weighted difference between the lth strain
and stress relaxation times, where the weight is the ratio of the lth
relaxed modulus to the average relaxed modulus. Because for an
SLS element τεl > τσl (see Section 2.1.3), we obtain τ̃ ′

εl
> τσl from

eq. (19). Note that it is not appropriate to write τ̃ ′
εl

(eq. 19) in a

similar form as eq. (15), because in this case the weight MRl /M R

is possibly larger than 1.
Referring to eqs (6), (7) and (18), we derive the second form of

the relaxation function as:

ψ(t) = MR

⎡
⎢⎣1 − 1

L

L∑
l=1

(
1 − τ̃ ′

εl

τσl

)
e
−

t

τσl

⎤
⎥⎦ H (t). (21)

In the special case that the relaxed moduli for all the SLS elements
are the same, that is, MRl = M R , eq. (19) then reduces to

τ̃ ′
εl

= τεl . (22)

In this special case, the relaxation function (eqs 21 with 22) is
the same as eq. (2.198) of Carcione (2014).

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/219/3/1939/5567617 by ETH

 Zürich user on 15 January 2020



The Zener model and the waves equations 1943

2.2.3 The equivalence between the two forms

As we have shown, both modulus expressions (13) and (18) are
obtained from eq. (12) without extra assumptions. Hence, the mod-
ulus (13) must be equivalent to the modulus (18). We only need
to demonstrate that these two forms of the relaxation function are
equivalent to each other. From eqs (15), (19) and (20), we relate
the lth strain relaxation time in the first form to that in the second
form,

τ̃ ′
εl

= L τ̃εl − (L − 1)τσl . (23)

Substitution of eq. (23) into the second form of the relaxation func-
tion (eq. 21) leads to the first form (eq. 17). Conversely, we may
derive the first form of the relaxation function from the second
form. From eq. (23), we obtain the expression for τ̃εl in terms of τ̃

′
εl

.
Furthermore, we substitute τ̃εl into the first form of the relaxation
function (eq. 17). Finally, we may obtain the second form of the
relaxation function (eq. 21).

3 B A S I C E Q UAT I O N S F O R
V I S C OA C O U S T I C WAV E S

The equation of motion for an elastic medium (ignoring the source
term) is written as

ρ
∂2ui

∂t2
= ∂σi j

∂x j
, (24)

where σ ij denote the components of the stress tensor, ρ denotes the
density, ui denote the components of the particle displacement and
xi denote the three Cartesian coordinates, with i, j = 1, 2, 3.

For an acoustic medium, the stress tensor is written as

σi j = −Pδi j , (25)

where P is the pressure and δij denotes the Kronecker delta.
Substituting eq. (25) into eq. (24), we obtain the acoustic equation

of motion:

ρ
∂2ui

∂t2
= − ∂ P

∂xi
. (26)

By analogy with eq. (3), the time-domain constitutive equation
for a general viscoacoustic medium is written as

−P(x, t) =
∫ t

−∞
ψ(t − τ )dτ θ (x, τ )

= ψ(0+)θ (x, t) +
∫ t

0
ψ̇(t − τ )θ (x, τ )dτ.

(27)

where ψ and θ denote the bulk relaxation function and the cubical
dilatation, respectively, both of which are assumed to be bounded
and causal. The dot on ψ̇ denotes the first temporal derivative and
the term ‘dτ θ (x, τ )’ denotes the differential of the cubical dilatation
with respect to time.

The cubical dilatation θ is equal to the divergence of the particle
displacement, or the sum of the normal strains:

θ = ∇ · u, (28)

where ∇ denotes the gradient operator and u denotes the particle
displacement, with components ui.

By analogy with eq. (4), the frequency-domain viscoacoustic
constitutive equation is given by

− P̂ = M θ̂ , (29)

where the hat on P̂ and θ̂ denotes the Fourier transform and M
denotes the bulk modulus given in eq. (5).

Referring to eqs (17) and (13), the bulk relaxation function and
modulus for the generalized SLS model are summarized as follows:

ψ(t) = MR

⎡
⎢⎣1 −

L∑
l=1

(
1 − τ̃εl

τσl

)
e
−

t

τσl

⎤
⎥⎦ H (t), (30)

M(ω) = MR

(
1 − L +

L∑
l=1

1 − iωτ̃εl

1 − iωτσl

)
, (31)

where MR denotes the relaxed bulk modulus. L denotes the number
of relaxation mechanisms. τσl denotes the lth stress relaxation time
and τ̃εl denotes the weighted average of the lth strain and stress
relaxation times (eq. 15). H(t) denotes the Heaviside function.

Alternative forms of the relaxation function and the modulus
are given in eqs (21) and (18). These two forms of the relaxation
function and the modulus were demonstrated to be equivalent to
each other in the previous section.

4 T H E F I R S T S E T O F V I S C OA C O U S T I C
WAV E E Q UAT I O N S

4.1 Time-domain derivation

Utilizing the commutativity of the convolution operation, an alter-
native form of the time-domain constitutive equation (eq. 27) is
given by

− P(x, t) = ψ(0+)θ (x, t) +
∫ t

0
ψ̇(τ )θ (x, t − τ )dτ. (32)

We let ψ l denote the time-dependent term corresponding to the lth
relaxation mechanism in the relaxation function for the generalized
SLS model (eq. 30), that is,

ψl (t) = −MR

(
1 − τ̃εl

τσl

)
e
−

t

τσl H (t), (33)

such that the relaxation function is rewritten as

ψ(t) = MR H (t) +
L∑

l=1

ψl (t). (34)

Taking account of the above reformulation of the relaxation func-
tion, the first temporal derivative of the time-domain constitutive
eq. (32) for the SLS model is written as

− ∂ P

∂t
= ψ(0+)

∂θ

∂t
+

L∑
l=1

∫ t

0
ψ̇l (τ )θ̇(x, t − τ )dτ, (35)

with

ψ(0+) = MR

(
1 − L +

L∑
l=1

τ̃εl

τσl

)
, (36)

ψ̇l (t) = MR

τσl

(
1 − τ̃εl

τσl

)
e

−
t

τσl H (t), (37)

where we have used eqs (30) and (33) and assumed the initial cubical
dilatation at t = 0 to be zero, that is, θ (x, 0) = 0.
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Let rl be an auxiliary variable to represent the integral in eq. (35),
that is,

rl =
∫ t

0
ψ̇l (τ )θ̇ (x, t − τ )dτ. (38)

Hence, eq. (35) can be rewritten as

− ∂ P

∂t
= ψ(0+)

∂θ

∂t
+

L∑
l=1

rl . (39)

We use the commutativity of the convolution operation to rewrite
eq. (38) as

rl =
∫ t

0
ψ̇l (t − τ )θ̇ (x, τ )dτ. (40)

Hence, the first temporal derivative of rl is given by

∂rl

∂t
= ψ̇l (0)

∂θ

∂t
− 1

τσl

rl , (41)

where we have used the property ∂ψl/∂t = −ψl/τσl .
Eqs (39) and (41) form the time-domain constitutive equation for

the generalized SLS model in differential equation form. We substi-
tute eq. (28) into these two equations and introduce the momentum
density J = ρ∂u/∂t to incorporate the density, which allows us to
rewrite them in a different way. We may also rewrite the equation
of motion (eq. 26) using the momentum density. Finally, all these
operations lead to the first viscoacoustic wave equations for the
generalized SLS model in differential equation form. From these
viscoacoustic wave equations, we derive the second and third vis-
coacoustic wave equations. These viscoacoustic wave equations are
summarized as follows.

The first viscoacoustic wave equations are given by

∂ P

∂t
= −v2

U ∇ · J −
L∑

l=1

rl ,

∂rl

∂t
= −sl∇ · J − 1

τσl

rl , 1 ≤ l ≤ L ,

∂J

∂t
= −∇ P,

(42)

where vU denotes the acoustic velocity in the unrelaxed (infinite
frequency) state,

vU = vR

√√√√1 − L +
L∑

l=1

τ̃εl

τσl

, (43)

and sl denotes the density-normalized ‘−∂ψ l/∂t’ at t = 0,

sl = v2
R

τσl

(
τ̃εl

τσl

− 1

)
. (44)

Here vR = √
MR/ρ denotes the acoustic velocity in the relaxed

(zero frequency) state and sl is always positive as explained after
eq. (15).

The second viscoacoustic wave equations are given by

∂ P

∂t
= −v2

U E −
L∑

l=1

rl ,

∂rl

∂t
= −sl E − 1

τσl

rl , 1 ≤ l ≤ L ,

∂ E

∂t
= −∇2 P,

(45)

where E = ∇ · J denotes the divergence of the momentum density

and ∇2 denotes the Laplacian operator.
The third, more compact, viscoacoustic wave equations are given

by

∂2 P

∂t2
= v2

U ∇2 P −
L∑

l=1

wl ,

∂wl

∂t
= sl∇2 P − 1

τσl

wl , 1 ≤ l ≤ L ,

(46)

where wl = ∂rl/∂t.

4.2 Frequency-domain derivation

We rewrite the bulk modulus for the generalized SLS model (eq. 31)
as

M = M0 +
L∑

l=1

Ml

1 − iωτσl

, (47)

with

M0 = MR

(
1 − L +

L∑
l=1

τ̃εl

τσl

)
, (48)

Ml = MR

(
1 − τ̃εl

τσl

)
. (49)

If we let

r̂ ′
l = − iωMl

1 − iωτσl

θ̂ , (50)

then the frequency-domain constitutive eq. (29) can be rewritten as

− P̂ = M0θ̂ +
L∑

l=1

r̂ ′
l

(−iω)
. (51)

Multiplying the above equation by ‘−iω’, substituting the Fourier
transform of the cubical dilatation (eq. 28) and taking the inverse
Fourier transform (eq. 2), we may derive the following differential
equation,

∂ P

∂t
= −M0

∂θ

∂t
−

L∑
l=1

r ′
l , (52)

where we recall that the frequency-domain factor ‘−iω’
corresponds to the first temporal derivative ∂/∂t in the
time-domain.

Moving the denominator of the fraction on the right-hand side of
eq. (50) to the left side and performing the inverse Fourier transform,
we may obtain another differential equation:

r ′
l + τσl

∂r ′
l

∂t
= Ml

∂θ

∂t
. (53)

Furthermore, we substitute eqs (28), (48) and (49) with the
relation MR = ρv2

R into the above two equations and take into
account the definition of the momentum density for simplifica-
tion. The remaining part is to rewrite the equation of motion
(eq. 26) in terms of the momentum density, which is similar to
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the one shown in the previous subsection. Finally, we end up with
the first viscoacoustic wave equation (42). The second and third
viscoacoustic wave equations are not repeated either, since as a
consequence of the first viscoacoustic wave equation, they are
shown in eqs (45) and (46).

5 T H E S E C O N D S E T O F
V I S C OA C O U S T I C WAV E E Q UAT I O N S

5.1 Time-domain derivation

We let

P =
L∑

l=0

Pl , (54)

such that the time-domain constitutive equation for the generalized
SLS model (eqs 27 and 30) can be rewritten as

− P0 = MRθ, (55)

Pl = ψ ′
l (0+)θ +

∫ t

0
ψ̇ ′

l (t − τ )θ (x, τ )dτ, 1 ≤ l ≤ L , (56)

with

ψ ′
l (t) = MR

(
1 − τ̃εl

τσl

)
e
−

t

τσl H (t). (57)

Taking the derivative of eqs (55) and (56) with respect to t, we
obtain

∂ P0

∂t
= −MR

∂θ

∂t
, (58)

∂ Pl

∂t
= ψ ′

l (0+)
∂θ

∂t
− 1

τσl

Pl , (59)

where we have used the property ∂ψ ′
l /∂t = −ψ ′

l /τσl .
We next adopt a similar approach to derive the second set of

viscoacoustic wave equations. We express the relaxed modulus in
eq. (58) as MR = ρv2

R . We substitute the cubical dilatation (eq. 28)
into eqs (58) and (59), take into account the momentum density
J = ρ∂u/∂t and assume the medium density to be constant. All
these operations allow us to rewrite eqs (58) and (59) to involve
the momentum density. The equation of motion (eq. 26) can be
rewritten in a similar way. Such modifications to these equations
lead to a viscoacoustic wave equation. We summarize the second
set of viscoacoustic wave equations as follows.

The first viscoacoustic wave equations are

P =
L∑

l=0

Pl ,

∂ P0

∂t
= −v2

R∇ · J,

∂ Pl

∂t
= −τσl sl∇ · J − 1

τσl

Pl , 1 ≤ l ≤ L ,

∂J

∂t
= −∇ P,

(60)

where sl is given in eq. (44).

The second viscoacoustic wave equations are

P =
L∑

l=0

Pl ,

∂ P0

∂t
= −v2

R E,

∂ Pl

∂t
= −τσl sl E − 1

τσl

Pl , 1 ≤ l ≤ L ,

∂ E

∂t
= −∇2 P.

(61)

The third viscoacoustic wave equations are

P =
L∑

l=0

Pl ,

∂2 P0

∂t2
= v2

R∇2 P,

∂2 Pl

∂t2
= τσl sl∇2 P − 1

τσl

∂ Pl

∂t
, 1 ≤ l ≤ L .

(62)

5.2 Frequency-domain derivation

We rewrite the bulk modulus (eq. 31) as

M = MR +
L∑

l=1

iωM ′
l

1 − iωτσl

, (63)

with

M ′
l = MR

(
τσl − τ̃εl

)
. (64)

Utilizing the frequency-domain constitutive equation (eq. 29), we
let

− P̂ ′
0 = MR θ̂ , (65)

− P̂ ′
l = iωM ′

l

1 − iωτσl

θ̂ , (66)

such that the pressure is split into various parts

P̂ =
L∑

l=0

P̂ ′
l . (67)

Transforming eq. (65) to the time domain, substituting eq. (28)
into the result and taking the first temporal derivative, we obtain the
following differential equation,

∂ P ′
0

∂t
= −MR∇ · v, (68)

where v denotes the particle velocity vector.
Moving the denominator of the fraction on the right-hand side of

eq. (66) to the left-hand side, performing the inverse Fourier trans-
form, and substituting eq. (28), we may obtain another differential
equation,

P ′
l + τσl

∂ P ′
l

∂t
= M ′

l ∇ · v, 1 ≤ l ≤ L . (69)

Taking into account the relation MR = ρv2
R and eqs (44) and (64),

we may rewrite the above two equations and the equation of motion
(eq. 26) to involve the momentum density. A combination of all
these equations gives rise to the wave equation (60). As illustrated
in the previous subsection, the other two forms of the wave equations
can be obtained further as a consequence.
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6 T H E E Q U I VA L E N C E B E T W E E N T H E
T W O S E T S O F V I S C OA C O U S T I C WAV E
E Q UAT I O N S

Comparing the first set of viscoacoustic wave equations (eqs 42,
45 and 46) with the second set of viscoacoustic wave equations
(eqs 60–62), we find that the two sets of equations are equivalent to
each other through the following relations:

rl = 1

τσl

Pl , (70)

wl = 1

τσl

∂ Pl

∂t
. (71)

We take the first temporal derivative of the first of the viscoa-
coustic wave equation (60), substitute the second and third of these
viscoacoustic wave equations into the result, and subsequently make
use of eqs (43), (44) and (70). Finally, we obtain the viscoacoustic
wave equation (42). Similarly, we can transform the viscoacous-
tic wave equations (61) and (62) to the viscoacoustic wave equa-
tions (45) and (46), respectively. Conversely, we may substitute
eqs (70) and (71) into the first set of viscoacoustic wave equations
and split the pressure P into the summation form [referring to the
first of the viscoacoustic wave equation (60), for instance]. After
some algebraic manipulation, we may finally obtain the second set
of viscoacoustic wave equations.

A source term is needed to implement our proposed viscoacous-
tic wave equations for seismic modelling. We may maintain the
one-to-one equivalence between the two sets of viscoacoustic wave
equations in the following way: we add the source term to the right
side of the equations including ∂P/∂t and ∂P0/∂t in the first and
second sets of viscoacoustic wave equations, respectively.

7 D I S C U S S I O N

Carcione (2014, p.94) mentioned that ‘As stated before, some pro-
cesses, as for example, grain-boundary relaxation, have a dissipation
factor that is much broader than a single relaxation curve. It seems
natural to try to explain this broadening with a distribution of re-
laxation mechanisms. This approach was introduced by Liu et al.
(1976) to obtain a nearly constant quality factor over the seismic
frequency range of interest. Strictly, their model cannot be repre-
sented by mechanical elements, since it requires a spring of nega-
tive constant (Casula & Carcione, 1992)’. Further, Carcione (2014,
p.96) stated that ‘The relaxation function obtained by Liu et al.
(1976) lacks the factor 1/L’. Here, the relaxation function obtained
by Liu et al. (1976) is the same as the first form of the relaxation
function we obtained (eq. 17). As demonstrated in Section 2.2.3,
however, the first form of the relaxation function can be described
by a parallel combination of multiple SLS elements in the Kelvin–
Voigt/Maxwell representations (Figs 1b and 2b), and is equivalent to
the second form, which is a general case of eq. (2.198) in Carcione
(2014), because the strain relaxation time τεl in his eq. (2.198) is
obtained by assuming the relaxed moduli of all SLS elements are
equal to each other. Such an assumption is unnecessarily restrictive.

We use the frequency-domain formulations to express the relaxed
modulus and relaxation times of the SLS model in terms of the
mechanical properties of the springs and dashpot in the Kelvin–
Voigt and Maxwell representations. Furthermore, the generalized
SLS model is obtained by superposition of multiple SLS elements.

As an alternative, our derivation can also be carried out in the
time-domain. We take the Kelvin–Voigt representation (Fig. 1a) as

an example. From eqs (8), we may obtain a time-domain first-order
differential equation in terms of σ and ε. Taking into account the
initial condition that σ and ε are zero at t = 0, we may solve the
differential equation for σ and rewrite its solutions in the form of
eq. (27), from which we determine the relaxation function ψ(t).
Furthermore, we rewrite ψ(t) in the form of eq. (6) to determine
MR, τ̃ε and τ σ for the SLS model. The above approach can also
be applied to the SLS model in the Maxwell representation. For
the generalized SLS model composed of L parallel SLS elements
(Figs 1b and 2b), its relaxation function is the sum of the relaxation
functions of all SLS elements. Rewriting the relaxation function for
the generalized SLS model in the form of eq. (30) gives rise to the
expressions for MR, τ̃εl and τσl .

Although this means that the time- and frequency-domain ap-
proaches are equivalent to each other, the frequency-domain ap-
proach is more convenient. The time-domain approach involves the
exponential terms in the relaxation function, but the frequency-
domain approach only requires some simple algebraic operations
without the exponential terms.

All the wave equations derived in this paper correspond to the
modulus given in eq. (13) and the relaxation function given in
eq. (17). Alternative forms of the relaxation function and the modu-
lus are given in eqs (21) and (18). Since in Section 2 we demonstrate
that the two forms of the relaxation function and the modulus are
equivalent to each other, we will not derive the wave equations from
the second form.

8 C O N C LU S I O N S

The two forms of the relaxation function (or modulus) for the gen-
eralized SLS model are equivalent to each other. The viscoacoustic
wave equations for the generalized SLS model are obtained from
the unified approach by considering both the time- and frequency-
domain formulations. The two sets of viscoacoustic wave equations
are equivalent to each other. The analysis shown in this study can
be extended to derive the viscoacoustic anisotropic wave equations,
and the viscoelastic isotropic/anisotropic wave equations for the
generalized SLS model.
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