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ABSTRACT

The offset-midpoint traveltime pyramid describes the dif-
fraction traveltime of a point diffractor in homogeneous me-
dia. We have developed an analytic approximation for the
P-wave offset-midpoint traveltime pyramid for homogeneous
orthorhombic media. In this approximation, a perturbation
method and the Shanks transform were implemented to de-
rive the analytic expressions for the horizontal slowness
components of P-waves in orthorhombic media. Numerical
examples were shown to analyze the proposed traveltime
pyramid formula and determined its accuracy and the appli-
cation in calculating migration isochrones and reflection
traveltime. The proposed offset-midpoint traveltime formula
is useful for Kirchhoff prestack time migration and migra-
tion velocity analysis for orthorhombic media.

INTRODUCTION

Time migration is a standard step of seismic data processing. The
phase-shift migration is often used to handle the poststack and pre-
stack data from vertically heterogeneous models. For the prestack
phase-shift migration of common-midpoint gathers, the phase-shift
function is constructed by a double-square-root equation in terms of
the wavenumber (slowness) components defined in midpoint-offset
domain (Yilmaz [2001], p. 638). The multiple integrals in phase-
shift migration can be treated by the stationary phase method. Al-
khalifah (2000a, 2000b) uses the stationary phase method to obtain
an asymptotic solution of the multiple integral of an oscillatory
function in the prestack phase-shift offset-midpoint migration for
transversely isotropic media with a vertical symmetry axis (VTI).
In the oscillatory function, the P-wave traveltime at the stationary

point is described by an offset-midpoint traveltime equation, which
is also called the offset-midpoint traveltime pyramid or Cheops’
pyramid (Claerbout [1985], pp. 164–166; Alkhalifah, 2000a) be-
cause of the shape of the offset-midpoint traveltime surface. This
treatment of the phase-shift migration leads to the Kirchhoff pre-
stack migration using straight rays, which is extremely efficient
for time-domain migration of prestack seismic data, and subsequent
migration-based velocity analysis.
The offset-midpoint traveltime pyramid controls the phase term

in the Kirchhoff prestack migration based on straight rays. For iso-
tropic media, the P-wave offset-midpoint traveltime pyramid is
expressed by a very simple analytic equation (Claerbout [1985],
p. 163). For general anisotropic media, it is impossible to find exact
and analytic expressions for the offset-midpoint traveltime pyramid
of P-waves. Even for VTI media, one cannot find such analytic ex-
pression because there exists no exact and analytic relation between
phase and group velocities. Although numerical methods for solv-
ing inverse problems may accurately obtain the P-wave offset-
midpoint traveltime pyramid for general anisotropic media, this
significantly decreases the efficiency of the Kirchhoff prestack time
migration. A common way to overcome this problem is to find
approximate analytic solutions using perturbation theory. In this
way, an approximate traveltime formula can be found for the com-
plex medium under consideration by seeking a small perturbation
from an analytic solution valid for a simpler reference medium. For
instance, the traveltime of body waves in weakly anisotropic media
can be calculated along the reference ray in an isotropic back-
ground, in which the weak anisotropy parameters are taken as
the perturbation parameters (Farra and Psencik, 2013a, 2013b);
the eikonal equation for transversely isotropic media can also be
solved by perturbation approaches, and the anellipticity parameter
plays the role of perturbation parameter (Stovas and Alkhalifah,
2012, 2013). Recently, we applied a similar perturbation technique
to obtain the analytic formulas for offset-midpoint traveltime pyra-
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mids of P-waves in tilted transversely isotropic media (Hao and
Stovas, 2014, 2015) and the horizontal transversely isotropic media
(Hao et al., 2015).
Orthorhombic anisotropy is characterized by three mutually

orthogonal planes of mirror symmetry (Tsvankin [2001], pp. 10–
11). Orthorhombic symmetry provides a more realistic description
of sedimentary basins with parallel vertical fractures or isotropic
media with two orthogonal sets of vertical fractures (Schoenberg
and Helbig, 1997; Bakulin et al., 2000). An elastic orthorhombic
medium includes nine independent stiffness coefficients and three
mutually orthogonal planes of mirror symmetry. In each symmetry
plane, the medium exhibits transverse isotropy. In this kind of me-
dia, the P-wave phase and group velocities are exactly characterized
by all nine independent stiffness coefficients. Tsvankin’s (1997) no-
tation is widely used to parameterize elastic orthorhombic media.
Because the P-wave traveltime and velocity are insensitive to the
velocity parameter of S-waves in Tsvankin’s (1997) notation, the
acoustic approximation (Alkhalifah, 2003) provides a practical
assumption for seismic modeling and inversion of P-wave kinemat-
ics (e.g., velocity and traveltime) for orthorhombic media. For such
models, the S-wave velocities along the three symmetry axes are
assumed to be zero. Only six independent parameters are required
to describe the P-wave phase and group velocities in this kind of
media. Alkhalifah’s (2003) notation is normally used to parameter-
ize the acoustic orthorhombic media.
In this paper, we present the P-wave offset-midpoint traveltime

pyramid for homogeneous orthorhombic media. We modify Alkha-
lifah’s (2003) notation to characterize P-wave slowness surface for
orthorhombic media by replacing the Thomsen (1986)-type param-
eter δ3 by the corresponding anellipticity parameter. From the pre-
stack phase-shift migration operator for offset-midpoint gathers, the
P-wave traveltime at the stationary point is derived by the combi-
nation of perturbation theory and the Shanks transform (Bender and
Orszag [1978], pp. 369–375). Simple numerical examples are given
to analyze the traveltime pyramid formula and to show its applica-
tions in generating the migration isochrones and calculating the
P-wave reflection traveltime. Applying the offset-midpoint travel-
time pyramid to the Kirchhoff prestack time migration for ortho-
rhombic media is explained in the “Discussion” section.

KIRCHHOFF PRESTACK TIME MIGRATION

The single-trace response of the 3D prestack time-domain phase-
shift migration defined in the half-offset-midpoint domain for homo-
geneous anisotropic media reads (Hao et al., 2015; Appendix A)

Pðx1; x2; h1 ¼ 0; h2 ¼ 0; τ; t ¼ 0Þ

¼
Z

∞

−∞

Z
∞

−∞

Z
∞

−∞

Z
∞

−∞

Z
∞

−∞
~Pðx01; x02; h01; h02; τ ¼ 0;ωÞ

× expðiωTÞdωdkh1dkh2dkx1dkx2; (1)

where subscripts 1 and 2 denote the x- and y-axes of an acquisition
system, respectively; t denotes the time; ω denotes the angular fre-
quency; Pðx1; x2; h1; h2; τ; tÞ denotes the time-domain common-
midpoint data extrapolated to the “time depth” τ, where the time
depth denoting the two-way traveltime of vertically propagating
P-waves is used to describe the extrapolation depth in time domain;
ðx1; x2Þ denotes the midpoint position; ðh1; h2Þ denotes the source-

receiver half-offset; ðx1; x2; z ¼ τυp0∕2Þ denotes the position of an
image point in depth domain, where υp0 denotes the vertical velocity
of P-waves; Pðx1; x2; h1 ¼ 0; h2 ¼ 0; τ; t ¼ 0Þ denotes the seismic
image after the prestack time migration using the exploring reflector
imaging condition; ~Pðx01; x02; h01; h02; τ ¼ 0;ωÞ denotes the frequency-
domain single-trace surface seismic data, where the position of the
single trace in data space is described by the midpoint position
ðx01; x02Þ and the source-receiver half-offset ðh01; h02Þ; ðkx1; kx2Þ and
ðkh1; kh2Þ denote the horizontal wavenumber vectors of midpoint
and source-receiver half-offset; and T is the traveltime shift that is
expressed by

Tðps1; ps2; pg1; pg2Þ ¼
1

2
ðqs þ qgÞτυp0 þ ps1ys1

þ ps2ys2 þ pg1yg1 þ pg2yg2; (2)

where ðys1; ys2Þ ¼ ðx01 − h01 − x1; x02 − h02 − x2Þ denotes the lateral
distance vector between the image point and the source; ðyg1; yg2Þ ¼
ðx01 þ h01 − x1; x02 þ h02 − x2Þ denotes the lateral distance vector be-
tween the image point and the receiver; qs and qg are the vertical
slowness components of source and receiver, which are the
functions of the horizontal slowness components; ðps1; ps2Þ and
ðpg1; pg2Þ are the horizontal slowness vectors of source and receiver,
which are linearly linked to the half-offset slowness vector
ðph1; ph2Þ ¼ ðkh1∕ð2ωÞ; kh2∕ð2ωÞÞ and the midpoint slowness vec-
tor ðpx1; px2Þ ¼ ðkx1∕ð2ωÞ; kx2∕ð2ωÞÞ by the following relationship:

ps1 ¼ px1 − ph1;

ps2 ¼ px2 − ph2;

pg1 ¼ px1 þ ph1;

pg2 ¼ px2 þ ph2: (3)

Equation 2 represents the traveltime of the plane wave propagat-
ing from the source to the image point and back to the receiver. The
geometric explanation of these quantities in equations 1 and 2 is
shown in Figure 1.
The integrals in equation 1 can be estimated by the stationary

phasemethod. The stationary point of the phase function in equation 1
corresponds to the local minimum or maximum of the traveltime shift
2. Hence, the stationary point is found from the equations

∂qðs;gÞ
∂piðs;gÞ

¼ −
2yiðs;gÞ
τυp0

; i ¼ 1;2; (4)

where the vector ðp1; p2Þ, q, and ðy1; y2Þ are either ðps1; ps2Þ, qs,
and ðys1; ys2Þ for the source or ðpg1; pg2Þ, qg, and ðyg1; yg2Þ for the
receiver, respectively. Traveltime shift 2 with stationary phase con-
dition 4 describes the exact traveltime of seismic ray from the source
to the image point then back to the receiver. Using the stationary
phase method, we finally derive the closed-form expression for equa-
tion 1 (Appendix A):

Pðx1; x2; h1 ¼ 0; h2 ¼ 0; τ; t ¼ 0Þ

≈
1

4π2
ffiffiffiffiffiffiffiffiffiffiffijλsλgj

p ∂2

∂ ~T2
~Pðx01; x02; h01; h02; τ ¼ 0; ~TÞ cos ξ; (5)
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which is the single-trace response of the Kirchhoff prestack time mi-
gration based on straight rays. Here, ~Pðx01; x02; h01; h02; τ ¼ 0; tÞ de-
notes the time-domain single-trace surface seismic data with
midpoint ðx01; x02Þ and source-receiver half-offset ðh01; h02Þ; ~T is the

diffraction traveltime of P-wave rays, ~T ¼ Tð ~ps1; ~ps2; ~pg1; ~pg2Þ, cor-
responding to traveltime shift 2 under stationary phase condition 4,
where ð ~ps1; ~ps2Þ and ð ~pg1; ~pg2Þ are the horizontal slowness vectors
of source and receiver at stationary point; λs and λg are linked to the
Gaussian curvatures of the slowness surfaces of the source and
receiver; ξ is the phase shift depending on the signs of principal cur-
vatures of the slowness surfaces of source and receiver. All these
quantities are explicitly expressed in terms of the horizontal slowness
components of source and receiver. However, it is generally complex
to calculate source and receiver slownesses from midpoint and
source-receiver offset. In the following two sections, we derive ana-
lytic approximations for horizontal slowness components and travel-
times at the stationary points. Because the derivation is valid for
source and receiver, we use symbol ðp1; p2Þ to represent the hori-
zontal slowness vectors of either source or receiver. In addition, in
the following sections (apart from Appendix A), the horizontal slow-
ness components p1 and p2 and the traveltime T stand for their val-
ues at the stationary point (the tildes above ðp1; p2Þ and T are
neglected for convenience).

SLOWNESS APPROXIMATION
AT STATIONARY POINT

Under the acoustic assumption (Alkhalifah, 1998, 2003), the
phase and group velocities of P-waves in a homogeneous ortho-
rhombic medium can be normally characterized by Alkhalifah’s
(2003) notation including the P-wave vertical velocity υp0; the nor-
mal moveout (NMO) velocity υn2 and the anellipticity parameter
η2 ≡ ðε2 − δ2Þ∕ð1þ 2δ2Þ defined in the vertical symmetry [x, z]
plane; the NMO velocity υn1 and the anellipticity parameter
η1 ≡ ðε1 − δ1Þ∕ð1þ 2δ1Þ defined in the vertical symmetry [y, z]
plane; and the anisotropy parameter δ3 defined in the horizontal
symmetry [x, y] plane. We slightly modify Alkhalifah’s (2003) no-
tation by introducing the anellipticity parameter η3 ≡ ðε1 − ε2−
δ3ð1þ 2ε2ÞÞ∕ðð1þ 2δ3Þð1þ 2ε2ÞÞ (Vasconcelos and Tsvankin,
2006) defined in the [x, y] plane instead of the anisotropy parameter
δ3 (Appendix B). The similar modifications on Alkhalifah’s (2003)
notation may also be seen in Hao and Stovas (2016a, 2016b) and
Stovas (2015). As a result, the P-wave vertical slowness component
q is written as a function of the horizontal slowness components p1

and p2:

q2 ¼ 1

υ2p0ð1þ 2η3Þ
f1ðp1; p2Þ
f2ðp1; p2Þ

; (6)

where

f1ðp1;p2Þ ¼ 1− ð1þ 2η2Þυ2n2p2
1− ð1þ 2η1Þυ2n1p2

2

þ2η3ð1− ð1þ 2η2Þυ2n2p2
1Þð1− ð1þ 2η1Þυ2n1p2

2Þ;
(7)

f2ðp1; p2Þ ¼ 1 − 2η2υ
2
n2p

2
1 − 2η1υ

2
n1p

2
2 − 2Ωυ2n1υ2n2p2

1p
2
2;

(8)

with

Ω ¼
�
1þ η1 þ η2 þ η3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2η1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2η2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2η3

p
− 4η1η2η3

�
∕ð1þ 2η3Þ: (9)

It is worth mentioning that Stovas (2015) defines a new param-
eter ηxy and replaces the anellipticity parameter η3 to describe the
slowness surface equation for acoustic orthorhombic media. From
equations 4 to 9, we can eliminate the vertical slowness component
q and obtain two eighth-order algebraic equations in terms of p2

1

and p2
2 (see equations C-1 and C-2 in Appendix C). Because there

is no exact and analytic formula to express the exact solution to
these equations, we seek their approximate solution by defining
the following perturbation expansions with respect to the three anel-
lipticity parameters,

p2
1 ¼ c0 þ

X3
i¼1

ciηi þ
X3

i;j¼1;i≤j
cijηiηj; (10)

p2
2 ¼ d0 þ

X3
i¼1

diηi þ
X3

i;j¼1;i≤j
dijηiηj; (11)

where c0, ci, cij, d0, di, and dij are the undetermined coefficients.
All these coefficients are determined in Appendix C by substituting
expansions 10 and 11 into the two algebraic equations (see equa-
tions C-1 and C-2 in Appendix C). For a given pair of midpoint and
half-offset, equations 10 and 11 require the NMO velocities (υn1 and
υn2), the three anellipticity parameters (η1, η2, and η3), and the two-

Figure 1. The geometric explanation of quantities in equations 1
and 2 (after Hao et al., 2015). In the Cartesian coordinate system
ðoxyzÞ, the source S ¼ ðs1; s2; 0Þ, the receiver G ¼ ðg1; g2; 0Þ, and
the midpointM ¼ ðx01; x02; 0Þ are located on the surface Σ. The half-
offset vector h0 ¼ ðh01; h02; 0Þ equals a half of the distance vector
from the source S to the receiver G. The point I ¼ ðx1; x2; zÞ is
an image point. The point I 0 ¼ ðx1; x2; 0Þ is the projection of the
image point I; on the surface Σ;. The vector ys ¼ ðys1; ys2Þ denotes
the lateral distance between the source S and the image point I, and
the vector yg ¼ ðyg1; yg2Þ denotes the lateral distance between the
receiver G and the image point I. The values γs and γg denote the
azimuths of vectors ys and yg, respectively. The plane wave from the
image point I to the source S has the source slowness
ðps1; ps2;−qsÞ, and the plane wave from the image point I to
the receiver G has the receiver slowness ðpg1; pg2;−qgÞ. These
slownesses in the source-receiver domain may be converted to
the midpoint-half-offset domain through equation 3.

Offset-midpoint traveltime pyramid C153
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way traveltime τ of vertically propagating P-waves in an orthorhom-
bic medium. It is worth mentioning that equations 10 and 11 are in-
dependent of the velocity υp0 of vertically propagating P-waves.
Then, we try to improve the accuracy of approximation for the

horizontal slowness component. The magnitude of the horizontal
slowness squared p2 is obtained by taking the sum of equations 10
and 11. We use the Shanks transformation (Bender and Orszag
[1978], pp. 369–375) to accelerate the convergence of the expan-
sion for p2. Consequently, we find

p2 ¼ G0 þ
G2

1

G1 − G2

; (12)

where

G0 ¼ c0 þ d0;

G1 ¼
X3
i

ðci þ diÞηi;

G2 ¼
X3

i;j¼1;i≤j
ðcij þ dijÞηiηj: (13)

To further calculate the values of p1 and p2, we define a
nonphysical azimuth α as α ¼ arctanðp2

1∕p2
2Þ, which denotes the

azimuth of vector ðp2
1; p

2
2Þ measured from the x-axis. From equa-

tions 10 and 11, we find the azimuth α given by

tan α ¼
c0 þ

X3
i¼1

ciηi þ
X3

i;j¼1;i≤j
cijηiηj

d0 þ
X3
i¼1

diηi þ
X3

i;j¼1;i≤j
dijηiηj

; α ∈ ½0; π∕2�:

(14)

From these operations, it follows that the horizontal slowness
components are given by

p1 ¼ sgnðy1Þp
ffiffiffiffiffiffiffiffiffiffiffi
cos α

p
; (15)

p2 ¼ sgnðy2Þp
ffiffiffiffiffiffiffiffiffiffi
sin α

p
: (16)

In equations 15 and 16, the operator sgnðyiÞ (i ¼ 1;2) makes sure
that the horizontal slowness component pi (i ¼ 1;2) and the hori-
zontal projection of propagation distance yi (i ¼ 1;2) always have
the same sign. These conditions preserve the horizontal projections
of the slowness vector and the ray velocity vector being in the same
quadrant of the [x, y] plane.

OFFSET-MIDPOINT TRAVELTIME PYRAMID

For the given midpoint and source-receiver half-offset, explicit
expressions for the horizontal slowness components of source
and receiver were derived in the previous section. Therefore, sub-
stituting the slowness surface equation 6, the diffraction traveltime 2
under the stationary phase condition 4 is written as an analytic func-
tion of the midpoint and source-receiver half-offset

Tðx1; x2; x01; x02; h01; h02; τÞ

¼ τ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2η3

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f1ðps1; ps2Þ
f2ðps1; ps2Þ

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðpg1; pg2Þ
f2ðpg1; pg2Þ

s �

þ ps1ys1 þ ps2ys2 þ pg1yg1 þ pg2yg2: (17)

This formula is aimed to calculate the traveltime T in the expres-
sion for the single-trace response of the Kirchhoff prestack time
migration (equation 5). Because T is entirely dependent on the mid-
point and the source-receiver half-offset for a single point diffractor
ðx1; x2; z ¼ υp0τ∕2Þ, formula 17 is referred as the offset-midpoint
traveltime pyramid for orthorhombic media. For a single diffractor
ðx1; x2; z ¼ υp0τ∕2Þ in a homogeneous orthorhombic medium, the
diffraction traveltime corresponding to the midpoint ðx01; x02Þ and the
half-offset ðh01; h02Þ is calculated in equation 17, where the horizon-
tal slowness components ðps1; ps2Þ for source and ðpg1; pg2Þ for
receiver are calculated from equations 12 to 16; the vector
ðys1; ys2Þ between source and midpoint and the vector ðyg1; yg2Þ be-
tween receiver and midpoint are defined after equation 2. As ex-
plained within the text after equation 11, for a given pair of
midpoint and half-offset, calculating the horizontal slowness com-
ponents in formula 17 only requires the NMO velocities (υn1 and
υn2), the three anellipticity parameters (η1, η2, and η3), and the two-
way traveltime τ of vertically propagating P-waves in an ortho-
rhombic medium. Therefore, formula 17 is independent of the
velocity υp0 of vertically propagating P-waves.
Until now, we discuss only the case of orthorhombic media with

three symmetry planes orthogonal to the axes of acquisition system.
To apply the traveltime equation 17 for azimuthal orthorhombic me-
dia, the lateral coordinate rotations are required. We assume the
lateral position of image point, midpoint and source-receiver
half-offsets for such media are denoted by uppercase symbols
ðX1; X2Þ, ðX0

1; X
0
2Þ, and ðH0

1; H
0
2Þ. These coordinates need to be

transformed to the corresponding lowercase symbols in formula 17.
For instance, the source-receiver offset ðH0

1; H
0
2Þ is projected to

ðh01; h02Þ by the following rotation:

h01 ¼ H0
1 cos ϕþH0

2 sin ϕ; (18)

h02 ¼ −H0
1 sin ϕþH0

2 cos ϕ; (19)

where ϕ denotes the azimuth of the [x, z] symmetry plane of an
orthorhombic medium in the acquisition system. The functions
ðX1; X2Þ and ðX0

1; X
0
2Þ can be obtained in a similar way.

TRAVELTIME PYRAMID FOR 2D VTI MEDIA

The vertical symmetry planes of an orthorhombic medium
exhibit transverse isotropy. Therefore, the traveltime pyramid de-
rived in the previous section can be reduced to the traveltime pyra-
mid for homogeneous VTI media. Without loss of generality, we
consider the [x, z] plane of a homogeneous VTI medium. In this
case, equation 17 is finally reduced to the traveltime pyramid for
2D VTI media (Alkhalifah, 2000b)

C154 Hao et al.
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Tðx; x0; h0; τÞ ¼ τ

2

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

υ2np2
s

1− 2υ2nηp2
s

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

υ2np2
g

1 − 2υ2nηp2
g

s 1
CA

þ psys þ pgyg; (20)

where x denotes the lateral position of the diffraction point; x0 and
h0 denote the midpoint and the source-receiver half-offset; τ de-
notes the vertical two-way traveltime from the diffraction point
to the surface; υn and η denote the NMO velocity and the anellip-
ticity parameter for the VTI medium; ys ¼ x0 − h0 − x and
yg ¼ x0 þ h0 − x denote the lateral distances from source and
receiver to the diffraction point; and ps and pg denote source
and receiver slownesses for a 2D VTI medium,

p2
s;g ¼

Y2
s;gðY6

s;g þ 6υ2nð1− ηÞτ2Y4
s;g þ 3υ4nð3þ 4ηÞτ4Y2

s;g þ 4υ6nτ
6Þ

υ2nðY2
s;g þ υ2nτ

2Þðð1þ 2ηÞY6
s;g þ 2υ2nð3þ 5ηÞτ2Y4

s;g þ υ4nð9þ 44ηÞτ4Y4
s;g þ 4υ6nτ

6Þ ;

(21)

with

Ys;g ¼ 2ys;g: (22)

Equation 21 is obtained from equation 12 with equations 13 and
equations C-9–C-29 in Appendix C, and it is first presented by Al-
khalifah (2000b).

NUMERICAL EXAMPLES

First, we test the accuracy of traveltime for-
mula 17. The relative error in traveltime is mea-
sured by the following formula:

E ¼ j1 − Tappr∕Texactj × 100%; (23)

where Tappr denotes the approximate traveltime
calculated by equation 17 and Texact denotes
the exact traveltime. The exact traveltime is ob-
tained by the following procedure: (1) to numeri-
cally solve the nonlinear equations C-1 and C-2
with equations C-3–C-6 for horizontal slowness
components p1 and p2 for source and receiver,
respectively, and (2) to substitute the horizontal
slowness components for source and receiver,
calculated in the previous step, into the travel-
time equation 2.
Figure 2 shows the relative errors of traveltime

pyramid along different acquisition azimuths for
a homogeneous, elliptically orthorhombic model.
For elliptically orthorhombic media, the three
anellipticity parameters are zero. The horizontal
slownesses for source and receiver, calculated
from equations C-1 and C-2, are exact for ellip-
tically orthorhombic media. In this case, travel-
time pyramid 17 is reduced to the exact
expression. This is verified in Figure 2, which
shows that the relative errors of traveltime pyra-
mid 17 are so small for elliptically orthorhombic
media. The small relative errors are due to the

numerical algorithm when numerically calculating the exact off-
set-midpoint traveltime pyramid.
Figure 3 shows the relative errors of traveltime pyramid 17 for a

homogeneous orthorhombic model with three nonzero anellipticity
parameters. Figure 3a and 3d corresponds to the acquisition azi-
muths coinciding with the two vertical symmetry planes of the
orthorhombic model. The two plots show that the relative errors
in traveltime are far smaller than 0.1%, and traveltime pyramid
17 is accurate enough in this case. The explanation to this phenome-
non is that only one anellipticity parameter (η1 or η2) affects the
accuracy of traveltime pyramid 17 when the acquisition azimuth
coincides with one of the vertical symmetry planes of orthorhombic
media. Figure 3a and 3d also proves the high accuracy of the trav-
eltime pyramid formula for VTI media (Alkhalifah, 2000b). For the
acquisition azimuth off the vertical symmetry planes of orthorhom-
bic media, however, Figure 3b and 3c illustrates that the relative
error of traveltime pyramid 17 increases significantly. This is be-
cause all three anellipticity parameters affect the accuracy of trav-
eltime pyramid 17, when the acquisition azimuth does not coincide
with the vertical symmetry planes of orthorhombic media. The com-
parison between Figures 2 and 3 illustrate that the accuracy of trav-
eltime pyramid 17 is significantly affected by the three anellipticity
parameters when the acquisition azimuth is off the vertical sym-
metry planes of an orthorhombic medium.
Figure 4 illustrates the offset-midpoint traveltime for different ac-

quisition azimuths. The peak of diffraction traveltime surfaces cor-
respond to the vertical two-way traveltime from the diffractor to the
acquisition surface. It is obvious that NMO velocity parameters and

Figure 2. The relative error of the traveltime pyramid formula along the acquisition
azimuths (a) 0, (b) π∕6, (c) π∕3, and (d) π∕2 in an elliptically orthorhombic medium.
The functions x0 and h0 denote the midpoint and offset along acquisition azimuth. The
medium parameters include the P-wave vertical velocity υp0 ¼ 3 km∕s; NMO velocities
υn1 ¼ 3.5 km∕s and υn2 ¼ 2.5 km∕s; three anellipticity parameters η1, η2, and η3 equal
to zeros. The single diffraction point is located behind the coordinate origin. The mini-
mum zero-offset two-way traveltime is τ ¼ 0.667 s.
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anellipticity parameters affect the shape of trav-
eltime surface. We can see that the offset-mid-
point traveltime is anisotropic.
Figure 5 shows the migration isochrones

for the common-offset prestack time-domain
Kirchhoff’s migration using the proposed travel-
time formula 17. The migration isochrones are
composed of diffractors, which have the same
diffraction time for a fixed pair of source and
receiver. Each time sampling in a single trace
is mapped along the migration isochrones. The
seismic image is the diffraction superposition
of all mapped data in subsurface. We can see that
for the vertical orthorhombic media, the azimu-
thal variation of migration isochrones happens
when the propagation direction of P-waves is
away from the vertical direction. This indicates
that the anisotropic effect can be obvious in
the migration image only for moderate and large
offset surface data if we do not consider the lat-
eral variations of models.
The traveltime pyramid 17 can be imple-

mented to calculate the P-wave reflection
traveltime in a horizontal orthorhombic layer.
Figures 6, 7, 8, and 9 show the accuracy compari-
son between the traveltime pyramid 17 and the
nonhyperbolic moveout approximation (Xu et al.,
2005; Vasconcelos and Tsvankin, 2006). This
indicates that the traveltime pyramid 17 is
more accurate than the nonhyperbolic moveout
approximation for orthorhombic media with
weak to strong anisotropy. As we note in the sec-
ond example, the three anellipticity parameters
significantly affect the accuracy of the reflection
traveltime approximation. For relatively small
values of anellipticity parameters, the traveltime
formula 17 is accurate enough. However, the ac-
curacy obviously decreases when increasing the
values of anellipticity parameters. This means
that the proposed traveltime approximation is
valid for orthorhombic media with weak to mod-
erate anellipticity.

DISCUSSION

With the aid of the stationary phase method,
the single trace response of the phase-shift mi-
gration (equation 1) becomes equation 5, which
can be used directly for the Kirchhoff prestack
time migration. The amplitude term in equation 5
corresponds to the geometric spreading of seis-
mic rays. The phase term in this equation is de-
pendent on the diffraction traveltime if we do not
consider the influence of ξ. The amplitude and
traveltime of the migration operator are ex-
pressed in terms of the horizontal slowness com-
ponents of source and receiver. In this paper, we
mainly present an analytic formula for the dif-
fraction traveltime of P-waves in orthorhombic
media in terms of midpoint and source-receiver

Figure 3. The relative error of the traveltime pyramid formula along the acquisition
azimuths (a) 0, (b) π∕6, (c) π∕3, and (d) π∕2 in an orthorhombic medium. The functions
x0 and h0 denote the midpoint and offset along an acquisition azimuth. The medium
parameters include the P-wave vertical velocity υp0 ¼ 3 km∕s; NMO velocities υn1 ¼
3.5 km∕s and υn2 ¼ 2.5 km∕s; anellipticity parameters η1 ¼ 0.1, η2 ¼ 0.3, and
η3 ¼ 0.2. The single diffraction point is located behind the coordinate origin. The mini-
mum zero-offset two-way traveltime is τ ¼ 0.667 s.

Figure 4. The offset-midpoint traveltime pyramids along the acquisition azimuths (a) 0,
(b) π∕6, (c) π∕3, and (d) π∕2 in an orthorhombic medium. The values x0 and h0 denote
the midpoint and offset along an acquisition azimuth. The medium parameters include
the P-wave vertical velocity υp0 ¼ 3 km∕s; NMO velocities υn1 ¼ 3.5 km∕s and
υn2 ¼ 2.5 km∕s; anellipticity parameters η1 ¼ 0.1, η2 ¼ 0.3, and η3 ¼ 0.2. The single
diffraction point is located behind the coordinate origin. The minimum zero-offset two-
way traveltime is τ ¼ 0.667 s. All plots are illustrated in the same color scale.
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half-offset. In this process, the horizontal slowness components of
source and receiver are analytically linked to the midpoint and
source-receiver half-offset using a perturbation theory and the
Shanks transform. The relevant derivations are shown in the “Slow-
ness approximation at stationary point” section. The slowness

Figure 5. The migration isochrones along different acquisition azi-
muths in a homogeneous orthorhombic media. The source-receiver
offset is taken as 0.5 km. The lateral axis x is the spatial position.
The vertical axis τ is the two-way vertical traveltime describing the
time depth of a point diffractor. The medium parameters are the
same as in Figure 3.

Figure 6. The relative error comparison between (a) the nonhyper-
bolic moveout approximation (Xu et al., 2005; Vasconcelos and
Tsvankin, 2006) and (b) approximation 17 for the P-wave travel-
time in a horizontal reflector in a 3D orthorhombic medium.
The lateral coordinates h01 and h02 denote the projections of
source-receiver half-offset on x- and z-axes. The model parameters
include υp0 ¼ 3 km∕s, υn1 ¼ 3.5 km∕s, υn2 ¼ 2.5 km∕s, η1 ¼ 0.1,
η2 ¼ 0.1, and η3 ¼ 0.1. The principal axes of orthorhombic model
coincide with the acquisition axes. The zero-offset two-way travel-
time is τ ¼ 0.667 s.

Figure 7. Similar to Figure 6, but the anellipticity parameters of
orthorhombic model are η1 ¼ 0.2, η2 ¼ 0.2, and η3 ¼ 0.2.

Figure 8. Similar to Figure 6, but the anellipticity parameters of
orthorhombic model are η1 ¼ 0.2, η2 ¼ 0.2, and η3 ¼ 0.3.
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approximation presented in this section is also helpful for determin-
ing the amplitude term in equation 5 because Gaussian curvatures λs
and λg are related to the second-order derivatives of vertical slow-
ness with respect to the horizontal slowness (see equation A-13 with
equations A-5 and 6–9). This means that for the given midpoint and
source-receiver half-offset, calculating amplitude can be achieved in
an entirely analytic and straightforward way similar to calculating
traveltime, although it is relatively complex compared with the trav-
eltime. Meanwhile, we note that for vertical orthorhombic media,
the vertical velocity parameter υp0 can be eliminated in the expres-
sions for amplitude and traveltime. This indicates that Kirchhoff
prestack time migration of P-waves in vertical orthorhombic media
requires only seven independent parameters (including two-way
zero-offset traveltime τ, NMO velocities υn1 and υn2, three anellip-
ticity parameters η1, η2, η3, and the azimuth ϕ of an orthorhombic
medium). For homogeneous orthorhombic media, these parameters
except τ are the real medium parameters. For heterogeneous ortho-
rhombic media, all these parameters are effective parameters that
are inverted by the moveout velocity analysis (Grechka and Tsvan-
kin, 1999; Vasconcelos and Tsvankin, 2006; Yan and Tsvankin,
2008). An example of Kirchhoff prestack time-domain migration
for VTI media is shown in Alkhalifah (2000b).
“Numerical examples” section shows that the anellipticity of

orthorhombic media strongly affects the accuracy of the offset-mid-
point traveltime approximation when the source-receiver half-offset
and the lateral distance between the midpoint and the point diffrac-
tor are very large: the stronger the anellipticity, the less accurate the
traveltime approximation. To purse a more accurate traveltime, we

may continue to determine the third-order expansions of the hori-
zontal slowness components squared with respect to the anelliptic-
ity parameters, which is a direct extension of the method introduced
in Appendix A. We may use the Shanks transform to improve the
accuracy of the third-order expansions. In this case, application of
the Shanks transform can also be seen in (Bender and Orszag
[1978], pp. 369–375). Once the horizontal slowness components
are obtained, we may use equation 17 to calculate the traveltime.
As an alternative, we may also numerically calculate the horizontal
slowness components for source and receiver. In Appendix C, equa-
tions C-1 and C-2 are two nonlinear algebraic equations with re-
spect to the horizontal slowness squared. We may adopt iterative
numerical methods, such as Gaussian-Newton method and conju-
gate gradient method to solve the equations C-1 and C-2. The ana-
lytic and exact horizontal slowness components for an elliptically
background, which are obtained by setting η1 ¼ η2 ¼ η3 ¼ 0 in
equations C-7 and C-8, may be used as the initial values of the hori-
zontal slowness components for the iterative numerical methods.
The formulas for amplitude and traveltime derived in this paper

can also be used in the angle-domain prestack time migration. Com-
pared with the conventional time migration discussed above, the
angle-domain prestack time migration requires the offset-to-angle
mapping of seismic image. In this process, the local scattering angle
and azimuth are calculated from the slowness vectors of source and
receiver (Cheng et al., 2011, 2012; Sun and Sun 2015). In this pa-
per, we show that the horizontal slowness components of source and
receiver can be analytically expressed in terms of the coordinates of
midpoint and source-receiver half-offset. From slowness surface
equation 6 with equations 7–9, the vertical slowness component
can be further obtained from the horizontal slowness components.
Therefore, the offset-to-angle mapping of the seismic image can be
eventually achieved. The last example in the “Numerical examples”
section illustrates the accuracy of approximate formulas 15 and 16
for horizontal slowness components in vertical orthorhombic media
with weakly or moderate anisotropy. This guarantees the accuracy
of offset-to-angle mapping if we do not consider the error in the
model parameters. Similar to Kirchhoff prestack time migration
discussed in the previous paragraph, the vertical velocity parameter
υp0 is not required for angle-domain Kirchhoff prestack time
migration.

CONCLUSION

With the aid of a perturbation theory and the Shanks transform,
we derive an analytic offset-midpoint traveltime formula from the
single trace response of the phase-shift midpoint-offset migration
using the stationary phase approximation. The formula is valid
for homogeneous orthorhombic media with weak to moderate anel-
lipticity. Also, the formula may be used in the prestack time-domain
Kirchhoff migration in heterogeneous orthorhombic media, in
which the medium parameters are replaced by their effective param-
eters obtained from the semblance-based velocity analysis.
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Figure 9. Similar to Figure 6, but the anellipticity parameters of
orthorhombic model are η1 ¼ 0.3, η2 ¼ 0.3, and η3 ¼ 0.3.
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APPENDIX A

KIRCHHOFF’S PRESTACK TIME MIGRATION

In this section, we derive a closed-form expression for the single-
trace response of the prestack time-domain phase-shift migration
using the stationary phase method. We adopt the special Fourier
transform convention used in Yilmaz and Claerbout (1980), Alkha-
lifah (2000a), Yilmaz (2001, p. 156), and Hao et al. (2015) neglect-
ing the factor 1∕ð2πÞ in front of the inverse of Fourier transform for
convenience. The stationary phase method for oscillatory integrals
is discussed by Bleistein and Handelsman (1986) in detail.
We change the offset-midpoint domain phase-shift migration 1 of

a single trace back to the source-receiver domain (Hao et al., 2015),

Pðx1; x2; h1 ¼ 0; h2 ¼ 0; τ; t ¼ 0Þ

¼
Z

∞

−∞

Z
∞

−∞

Z
∞

−∞

Z
∞

−∞

Z
∞

−∞
~Pðx01; x02; h01; h02; τ ¼ 0;ωÞ

× expðiωTÞdωdks1dks2dkg1dkg2; (A-1)

where ðks1; ks2Þ ¼ ωðps1; ps2Þ and ðkg1; kg2Þ ¼ ωðpg1; pg2Þ are the
vectors of horizontal wavenumbers of source and receiver.
ðps1; ps2Þ and ðpg1; pg2Þ are the corresponding horizontal slowness
vectors and T is the plane wave traveltime given by equation 2.
The stationary phase method requires the first-order derivative of

ωT with respect to the horizontal wavenumbers of source and
receiver equal to zero. From the traveltime expression 2, we find
the following stationary phase condition:

∂qðs;gÞ
∂piðs;gÞ

¼ −
2yiðs;gÞ
τυp0

; i ¼ 1; 2; (A-2)

where subscripts s and g correspond to source and receiver, respec-
tively, the expressions for yiðs;gÞ are given after equation 2. The P-
wave slownesses for the source and receiver at the stationary point
ð ~p1ðs;gÞ; ~p2ðs;gÞ; ~qðs;gÞÞ can be uniquely determined from equation A-2
and the slowness surface equation. For orthorhombic media, the
slowness surface equation is given by equations 6–9.
We expand the plane-wave traveltime function T in equation A-1

to second order at the stationary point

T ≈ ~T þ 1

2
ðps − ~psÞTssðps − ~psÞT

þ 1

2
ðpg − ~pgÞTggðpg − ~pgÞT; (A-3)

where ps ¼ ðps1; ps2Þ and pg ¼ ðpg1; pg2Þ denote the horizontal
slowness vectors of plane waves for source and receiver, respec-
tively; ~ps ¼ ð ~ps1; ~ps2Þ and ~pg ¼ ð ~pg1; ~pg2Þ denote the horizontal
slowness vectors for source and receiver, respectively, satisfying

the stationary phase condition A-2; ~T ¼ Tð ~ps1; ~ps2; ~pg1; ~pg2Þ de-
notes the traveltime at stationary point, which is identical to the dif-
fraction traveltime of seismic rays; and Tss and Tgg are symmetric
matrices of second-order traveltime derivatives,

Tss ¼
0
@ ∂2T

∂p2
s1

∂2T
∂ps1∂ps2

∂2T
∂ps1∂ps2

∂2T
∂p2

s2

1
A
������
ps1¼ ~ps1;ps2¼ ~ps2

;

Tgg ¼
0
@ ∂2T

∂p2
g1

∂2T
∂pg1∂pg2

∂2T
∂pg1∂pg2

∂2T
∂p2

g2

1
A
������
pg1¼ ~pg1;pg2¼ ~pg2

: (A-4)

Substituting the traveltime equation 2, the elements in matrices in
equation A-4 are expressed in terms of the horizontal slowness com-
ponents of the source and receiver,

∂2T
∂piðs;gÞ∂pjðs;gÞ

¼ τυp0
2

∂2qðs;gÞ
∂piðs;gÞ∂pjðs;gÞ

; i; j ¼ 1;2: (A-5)

We consider the eigen decomposition of symmetric matrices Tss

and Tgg,

Tss ¼ QsλsQT
s ;Tgg ¼ QgλgQT

g ; (A-6)

where Qs and Qg are the orthogonal matrices composed of the ei-
genvectors of Tss and Tgg; λs and λg are the diagonal matrices com-
posed of the eigenvalues of Tss and Tgg,

λs ¼
�
λs1

λs2

�
; λg ¼

�
λg1

λg2

�
; (A-7)

where matrices λs and λg are real valued and linked to the principal
curvatures of the slowness surfaces for the source and receiver.
Let us introduce two vectors μs ¼ ðμs1; μs2Þ, μg ¼ ðμg1; μg2Þ de-

fined by

μTs ¼ QT
s ðps − ~psÞT; μTg ¼ QT

g ðpg − ~pgÞT; (A-8)

such that traveltime equation A-3 can be rewritten as

T ≈ ~T þ 1

2
λs1μ

2
s1 þ

1

2
λs2μ

2
s2 þ

1

2
λg1μ

2
g1 þ

1

2
λg2μ

2
g2; (A-9)

and the integration variables in A-1 can be changed

Pðx1; x2; h1 ¼ 0; h2 ¼ 0; τ; t ¼ 0Þ

¼
Z

∞

−∞

Z
∞

−∞

Z
∞

−∞

Z
∞

−∞

Z
∞

−∞
ω4 ~Pðx01; x02; h01; h02; τ ¼ 0;ωÞ

× expðiωTÞdωdμs1dμs2dμg1dμg2: (A-10)

Considering the fact thatZ
∞

−∞
expðiλu2Þdu ¼

ffiffiffiffiffiffiffiffiffiffi
π∕jλj

p
exp

�
1

4
πi sgn λ

�
; (A-11)

and equation A-9, equation A-10 is approximated by

Pðx1;x2;h1 ¼ 0;h2 ¼ 0;τ; t¼ 0Þ

≈
1

4π2
ffiffiffiffiffiffiffiffiffiffiffijλsλgj

p ∂2

∂ ~T2
~Pðx01;x02;h01;h02;τ¼ 0; ~TÞcos ξ; (A-12)
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where λs and λg are linked to the Gaussian curvatures of the slow-
ness surfaces for the source and receiver

λs ¼ λs1λs2 ¼
�
∂2T
∂p2

s1

∂2T
∂p2

s2

−
�

∂2T
∂ps1∂ps2

�
2
�����

ps1¼ ~ps1;ps2¼ ~ps2

;

λg ¼ λg1λg2 ¼
�
∂2T
∂p2

g1

∂2T
∂p2

g2

−
�

∂2T
∂pg1∂pg2

�
2
�����

pg1¼ ~pg1;pg2¼ ~pg2

;

(A-13)

and the phase shift ξ is given by

ξ ¼ π þ π

4
ðsgnðλs1Þ þ sgnðλs2Þ þ sgnðλg1Þ þ sgnðλg2ÞÞ:

(A-14)

Formula A-12 describes the single-trace response of Kirchhoff
prestack time migration for general homogeneous anisotropic me-
dia through mapping the time-domain seismic data at surface
(τ ¼ 0) to subsurface. For a given pair of midpoint and source-
receiver offset, the Gaussian curvatures λs and λg, and traveltime
~T need the source and receiver slownesses that are preliminarily
estimated from the stationary phase condition A-2 and the slowness
surface equation for the considered anisotropic media. The process
of estimating source and receiver slownesses is generally not
straightforward. The main reason is that there is no exact and
explicit expression for phase propagation direction in terms of
the group propagation direction in general anisotropic media.

APPENDIX B

THE MODIFIED ALKHALIFAH’S NOTATION FOR
ACOUSTIC ORTHORHOMBIC MEDIA

The Alkhalifah’s (2003) notation is used to describe an acoustic
orthorhombic medium. For this set of parameters, the S-wave veloc-
ity along its principal axes is assumed to be zero. Therefore, only six
independent parameters are required to describe P-wave kinematics.
We slightly modify the Alkhalifah’s notation for acoustic ortho-
rhombic media:

υp0 ≡
ffiffiffiffiffiffiffi
a33

p
; (B-1)

η1 ≡
ε1 − δ1
1þ 2δ1

¼ a22ða33 − a44Þ
2ða223 þ 2a23a44 þ a33a44Þ

−
1

2
; (B-2)

η2 ≡
ε2 − δ2
1þ 2δ2

¼ a11ða33 − a55Þ
2ða213 þ 2a13a55 þ a33a55Þ

−
1

2
; (B-3)

η3 ≡
ε1 − ε2 − δ3ð1þ 2ε2Þ
ð1þ 2δ3Þð1þ 2δ2Þ

¼ a22ða11 − a66Þ
2ða212 þ 2a12a66 þ a11a66Þ

−
1

2
;

(B-4)

υn1 ≡ υp0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2δ1

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a223 þ 2a23a44 þ a33a44

a33 − a44

s
; (B-5)

υn2 ≡ υp0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2δ2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a213 þ 2a13a55 þ a33a55

a33 − a55

s
; (B-6)

where aij denotes the density-normalized stiffness coefficients in
Voigt notation; υp0 denotes the phase velocity of P-waves along
VTI (z-axis); subscripts 1, 2, 3 except for aij correspond to the
[y, z], [x, z], and [x, y] symmetry planes of an orthorhombic
medium, respectively; εi (i ¼ 1; 2i) and δi (i ¼ 1; 2; 3) are the
Thomsen-type parameters for orthorhombic media (Tsvankin,
1997); ηi (i ¼ 1; 2; 3) denote the anellipticity parameters (Grechka
and Tsvankin, 1999); and υni (i ¼ 1; 2) denote the NMO velocities.

APPENDIX C

THE PERTURBATION EXPANSIONS OF
HORIZONTAL SLOWNESS SQUARED

In this appendix, we derive the perturbation expansions of the
horizontal slowness squared defined in equations 10 and 11.
Substituting equation 6 with 7 and 8 into equation 4 allows us to

derive two algebraic equations:

að1þ 2η3ÞAB3 − p2
1υ

4
n2C

2 ¼ 0; (C-1)

bð1þ 2η3ÞAB3 − p2
2υ

4
n1D

2 ¼ 0; (C-2)

where a ¼ ð2y1∕τÞ2 and b ¼ ð2y2∕τÞ2; and

A ¼ ð1þ 2η3Þð1 − υ2n2p
2
1ð1þ 2η2Þ − υ2n1p

2
2ð1þ 2η1ÞÞ

þ2υ2n1υ
2
n2p

2
1p

2
2η3ð1þ 2η1Þð1þ 2η2Þ; (C-3)

B ¼ 1 − 2υ2n2p
2
1η2 − 2υ2n1p

2
2η1 − Ωυ2n1υ2n2p2

1p
2
2; (C-4)

C¼1þ2η3þp4
2υ

4
n1ð1þ2η1Þð4η1η3ð1þ2η2ÞþΩð1þ2η3ÞÞ

−p2
2υ

2
n1ð2ðη1−η2Þþ2η3ð1þ4η1þ4η1η2ÞþΩð1þ2η3ÞÞ;

(C-5)

D¼1þ2η3þp4
1υ

4
n2ð1þ2η2Þð4η2η3ð1þ2η1ÞþΩð1þ2η3ÞÞ

−p2
1υ

2
n2ð2ðη2−η1Þþ2η3ð1þ4η2þ4η1η2ÞþΩð1þ2η3ÞÞ:

(C-6)

In equations C-4–C-6, the expression forΩ is given in equation 9.
Equations C-1 and C-2 are two eighth-order algebraic equations in
terms of p2

1 and p2
2. It is difficult to obtain analytic and simple sol-

utions for these equations. We use perturbation theory to seek
approximate solutions of equations C-1 and C-2. As shown in equa-
tions 10 and 11, we define the perturbation expansions of p2

1 and p
2
2

with respect to anellipticity parameters ηi, i ¼ 1; 2; 3,
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p2
1 ¼ c0 þ

X3
i¼1

ciηi þ
X3

i;j¼1;i≤j
cijηiηj; (C-7)

p2
2 ¼ d0 þ

X3
i¼1

diηi þ
X3

i;j¼1;i≤j
dijηiηj; (C-8)

where c0, ci, cij, d0, di, and dij are the undetermined perturbation
coefficients. Substituting perturbations C-7 and C-8 into equa-
tions C-1 and C-2, we can obtain two new second-order expansions
with respect to the three anellipticity parameters ηi. Because all co-
efficients in the two expansions are equal to zero, we can determine
the coefficients defined in equations C-7 and C-8. The explicit ex-
pressions for these coefficients are shown as follows.
The expressions for the coefficients in equation C-7 are given by
The zero-order coefficient:

c0 ¼ υ−2n2 κ
−1aυ2n1: (C-9)

The first-order coefficients:

c1 ¼ 2κ−3abυ2n1ðaυ2n1 þ bυ2n2 − 2υ2n1υ
2
n2Þ; (C-10)

c2 ¼ −2κ−3υ−2n2aυ2n1ða2υ4n1 þ aυ2n1ð3bþ 4υ2n1Þυ2n2
þ 2bðbþ υ2n1Þυ4n2Þ; (C-11)

c3 ¼ −2κ−3abυ2n1ðaυ2n1 − 2ðbþ υ2n1Þυ2n2Þ: (C-12)

The second-order coefficients:

c11 ¼ κ−5abυ4n1ð−4a3υ4n1 þ a2υ2n1υ
2
n2ð−8bþ 9υ2n1Þ

þ aυ4n2ð−4b2 − 25bυ2n1 þ 15υ4n1Þ
þ 2υ6n2ð−17b2 þ 20bυ2n1 þ υ4n1ÞÞ; (C-13)

c22 ¼ κ−5υ−2n2aυ
2
n1ð4a4υ8n1 þ 20a3υ6n1υ

2
n2ðbþ υ2n1Þ

þ a2υ4n1υ
4
n2ð40b2 þ 109bυ2n1 þ 88υ4n1Þ

þ abυ2n1υ
6
n2ðbþ υ2n1Þð36bþ 79υ2n1Þ

þ 2bυ8n2ðbþ υ2n1Þ2ð6bþ υ2n1ÞÞ; (C-14)

c33 ¼ κ−5abυ2n1υ
2
n2ða2υ4n1ð28bþ 9υ2n1Þ

þ aυ2n1υ
2
n2ðbþ υ2n1Þð−40bþ 3υ2n1Þ

þ 2υ4n2ð2b − 3υ2n1Þðbþ υ2n1Þ2Þ; (C-15)

c12 ¼ −2κ−5abυ2n1υ2n2ða2υ4n1ð4bþ 29υ2n1Þ
þ aυ2n1υ

2
n2ð8b2 þ 15bυ2n1 − 41υ2n1Þ

þ2υ4n2ðbþ υ2n1Þð2b2 − 9bυ2n1 þ υ4n1ÞÞ; (C-16)

c13 ¼ 2κ−5abυ2n1ð2a3υ6n1 − a2υ4n1υ
2
n2ð10bþ 9υ2n1Þ

þ aυ2n1υ
4
n2ð−8b2 þ 31bυ2n1 − 9υ4n1Þ

þ2υ6n2ðbþ υ2n1Þð2b2 − 9bυ2n1 þ υ4n1ÞÞ; (C-17)

c23 ¼ 2κ−5abυ2n1υ
2
n2ða2υ4n1ð10bþ 29υ2n1Þ

þ aυ2n1υ
2
n2ð2b − 41υ2n1Þðbþ υ2n1Þ

þ2υ4n2ð−4bþ υ2n1Þðbþ υ2n1Þ2Þ: (C-18)

In equations C-9–C-18, the quantity κ is given by

κ ¼ aυ2n1 þ bυ2n2 þ υ2n1υ
2
n2: (C-19)

The expressions for the coefficients in expansion C-8 are given
by the zero-order coefficient:

d0 ¼ υ−2n1 κ
−1bυ2n2: (C-20)

The first-order coefficients:

d1 ¼ −2κ−3υ−2n1bυ2n2ð2a2υ4n1 þ aυ2n1υ
2
n2ð3bþ 2υ2n1Þ

þ bυ4n2ðbþ 4υ2n1ÞÞ; (C-21)

d2 ¼ 2κ−3abυ2n2ðaυ2n1 þ υ2n2ðb − 2υ2n1ÞÞ; (C-22)

d3 ¼ 2κ−3abυ2n2ð−bυ2n2 þ 2υ2n1ðaþ υ2n2ÞÞ: (C-23)

The second-order coefficients:

d11 ¼ κ−5υ−2n1bυ
2
n2ð12a4υ8n1 þ 2a3υ6n1υ

2
n2ð18bþ 13υ2n1Þ

þ a2υ4n1υ
4
n2ð40b2 þ 115bυ2n1 þ 16υ4n1Þ

þ aυ2n1υ
6
n2ð20b3 þ 109b2υ2n1 þ 79bυ4n1 þ 2υ6n1Þ

þ4b2υ8n2ðb2 þ 5bυ2n1 þ 22υ4n1ÞÞ; (C-24)

d22 ¼ κ−5abυ4n2ð−2a2υ4n1ð2bþ 17υ2n1Þ
þ aυ2n1υ

2
n2ð−8b2 − 25bυ2n1 þ 40υ4n1Þ

þ υ4n2ðbþ υ2n1Þð−4b2 þ 13bυ2n1 þ 2υ4n1ÞÞ; (C-25)

d33 ¼ κ−5abυ2n1υ
2
n2ð4a3υ4n1 þ 2a2υ2n1υ

2
n2ð−20bþ υ2n1Þ

þ aυ4n2ð28b2 − 37bυ2n1 − 8υ4n1Þ
þ 3υ6n2ð3b − 2υ2n1Þðbþ υ2n1ÞÞ; (C-26)

d12 ¼ −2κ−5abυ2n1υ2n2ð4a3υ4n1 þ 2a2υ2n1υ
2
n2ð4b − 7υ2n1Þ

þ aυ4n2ð4b2 þ 15bυ2n1 − 16υ4n1Þ
þ υ6n2ð29b2 − 41bυ2n1 þ 2υ4n1ÞÞ; (C-27)

d13 ¼ 2κ−5abυ2n1υ
2
n2ð−8a3υ4n1 þ 2a2υ2n1υ

2
n2ðb − 7υ2n1Þ

þ aυ4n2ðb − 4υ2n1Þð10bþ υ2n1Þ
þ υ6n2ð29b2 − 41bυ2n1 þ 2υ4n1ÞÞ; (C-28)
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d23 ¼ 2κ−5abυ2n2ð4a3υ6n1 − 2a2υ4n1υ
2
n2ð4bþ 7υ2n1Þ

− aυ2n1υ
4
n2ð10b2 − 31bυ2n1 þ 16υ4n1Þ

þ υ6n2ð2b3 − 9b2υ2n1 − 9bυ4n1 þ 2υ6n1ÞÞ: (C-29)

In equations C-20–C-29, the quantity κ is given in equation C-19.
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