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ABSTRACT
Computation of complex-valued traveltimes provides an efficient approach to de-
scribe the seismic wave attenuation for applications like attenuation tomography,
inverse Q filtering and Kirchhoff migration with absorption compensation. Attenu-
ating acoustic transverse isotropy can be used to describe the directional variation of
velocity and attenuation of P-waves in thin-bedding geological structures. We present
an approximate method to solve the acoustic eikonal equation for an attenuating
transversely isotropic medium with a vertical symmetry axis. We take into account
two similar parameterizations of an attenuating vertical symmetry axis medium. The
first parameterization uses the normal moveout velocity, whereas the second pa-
rameterization uses the horizontal velocity. For each parameterization, we combine
perturbation theory and the Shanks transform in different ways to derive analytic so-
lutions. Numerical examples show that the analytic solutions derived from the second
parameterization yield better accuracy. The Shanks transform solution with respect
to only the anellipticity parameter from the second parameterization is demonstrated
numerically to be the most accurate among all the analytic solutions.
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INTRODUCTION

Seismic wave propagation in the Earth exhibits attenuation.
In an attenuating medium, ray traveltimes of time-harmonic
body waves are generally complex valued and are governed
by the complex-valued eikonal equation (Červený and Pšenčı́k
2009). The real part of the complex-valued traveltimes corre-
sponds to the phase of the seismic wave, while the imaginary
part admits a decay in the amplitude due to energy absorp-
tion. Computation of complex-valued traveltimes is useful for
many applications including attenuation tomography, inverse
Q filtering and Kirchhoff migration with absorption compen-
sation. Horizontal fine layering is a common geological phe-
nomenon in the subsurface that causes effective attenuating
transverse isotropy with a vertical symmetry axis (VTI). As a
classic example of fine layering, shale is observed experimen-
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tally to be of attenuating transverse isotropy (e.g. Zhubayev
et al. 2015).

For an attenuating VTI medium, the velocity and attenua-
tion have the same symmetry. The combination of Thomsen’s
(1986) and Zhu and Tsvankin’s (2006) notations can be used
to describe the variation of velocity and attenuation with
wave propagation direction in an attenuating VTI medium.
In these notations, the shear-wave velocity parameter vS0 and
the attenuation coefficient parameter AS0 are also included to
characterize the exact P-wave velocity and attenuation. How-
ever, the influence of these parameters on the P-wave velocity
and attenuation is extremely weak (Tsvankin and Thomsen
1994; Alkhalifah 1998; Zhu and Tsvankin 2006; Hao and
Alkhalifah 2017b). Hence, ignoring the parameters vS0 and
AS0 barely affects the complex-valued traveltimes in an atten-
uating anisotropic medium. Using this approximation, Hao
and Alkhalifah (2017a, b) derived the acoustic attenuating
eikonal equations for VTI and orthorhombic media.
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The attenuating eikonal equation is classified mathe-
matically as a non-linear partial differential equation with
complex coefficients. For inhomogeneous attenuating me-
dia, numerical techniques are needed to solve the attenuating
eikonal equation. They include the complex ray method (e.g.
Kravtsov, Forbes and Asatryan 1999), the real ray method
(e.g. Vavryčuk 2008, 2012) and the real ray method based on
perturbation theory (e.g. Červený and Pšenčı́k 2009). All these
methods are ray based, that is, they calculate traveltimes using
the ray tracing equations rather than directly solve the attenu-
ating eikonal equation. Numerical techniques to directly solve
the attenuating eikonal equation have received little attention
so far. A review of the existing methods to solve the attenu-
ating eikonal equations can be found in Hao and Alkhalifah
(2017b).

For a homogeneous medium, the exact solution of the
attenuating eikonal equation can be computed using a ray-
based approach. The exact eikonal solution is given by the
ray propagation distance divided by the complex ray veloc-
ity. The ray direction is always real valued in homogeneous
attenuating media. The complex ray velocity can be indirectly
obtained by numerically solving a system of non-linear equa-
tions (Vavryčuk 2006, 2007).

Compared with the ray-based approaches, the analytic
solution of the attenuating eikonal equation is straightforward
and convenient to implement. Hao and Alkhalifah (2017a, b)
proposed a method combining a perturbation method and the
Shanks transform to obtain analytic solutions to the acoustic
attenuating VTI and orthorhombic eikonal equations. They
choose the anellipticity and attenuation-anisotropy parame-
ters as the perturbation parameters. In their method, the ref-
erence medium is attenuating and the coefficients of the trav-
eltime expansion are always complex valued. Because of the
complex eikonal equation in the reference medium, however,
it is difficult to implement their perturbation method in the
case of inhomogeneous media.

In this paper, we revisit the acoustic attenuating VTI
eikonal equation to find the analytic solutions in the case of
homogeneous media. We utilize two parameterizations and
combine the perturbation theory and the Shanks transform
to derive the analytic traveltime solutions. For each parame-
terization, we take into account an acoustic non-attenuating
elliptically isotropic medium as the background. In this case,
not only the reference eikonal equation but also the govern-
ing equations for the traveltime coefficients are real valued.
Hence, it is easy to implement the method in the case of in-
homogeneous media. We compare the accuracy of these so-
lutions to investigate the effect of parameterizations on the

traveltime approximation. Compared with the approaches
discussed in Hao and Alkhalifah (2017a, b), we show that
our new method needs less perturbation parameters and the
coefficients of our traveltime expansion are real valued, which
is more convenient for numerical implementations.

THEORY

In this section, we develop an approximate method for solving
the acoustic eikonal equation (Hao and Alkhalifah 2017a)
for a homogeneous attenuating vertical symmetry axis (VTI)
medium. We consider two parameterizations of the acoustic
attenuating VTI medium. The following five parameters are
common to both parameterizations:
1. vz – the P-wave vertical velocity;
2. η – the anellipticity anisotropy parameter (Alkhalifah
2000);
3. Az – the P-wave vertical wavenumber-normalized attenua-
tion coefficient (or briefly the attenuation coefficient), where
the wavenumber is defined as the number of radians per unit
distance, also referred to as the angular wavenumber;
4. εQ – the attenuation-anisotropy parameter describing the
fractional difference between the horizontal and the vertical
attenuation coefficients;
5. δQ – the attenuation-anisotropy parameter that controls
the curvature of the attenuation coefficient curve in the vertical
direction.

The two parameterizations differ in using the normal
moveout (NMO) velocity vn (Parameterization 1) and the hor-
izontal velocity vx (Parameterization 2).

For both parameterizations, the velocity-related parame-
ters vz, vn, vx and η are defined in the non-attenuating reference
VTI medium corresponding to the real part of the complex
stiffness coefficients. However, the attenuation-related param-
eters Az, εQ, δQ are defined in the attenuating VTI medium. A
detailed description of the attenuation-related parameters can
be found in Zhu and Tsvankin (2006).

The attenuating VTI eikonal equation is complicated to
solve analytically due to the existence of the fourth-order term.
Therefore, we seek an approximate solution of the equation.
Considering both η and Az are relatively small in magni-
tude, we design a perturbation method to split the attenuating
eikonal equation into a set of governing equations for the trav-
eltime coefficients in the second-order perturbation solution.
The benefit of this approach is that these governing equations
have an analytical solution for a homogeneous medium. We
apply the Shanks transform to the perturbation solution to
improve its accuracy.
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Parameterization 1

The first parameterization includes the parameters vz, vn and
η as defined in Alkhalifah (2000) and the parameters Az, εQ

and δQ as defined in Zhu and Tsvankin (2006). The acoustic
attenuating VTI eikonal equation under this parameterization
is given as (Hao and Alkhalifah 2017b)
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where the subscript ‘1’ in A1, B1 and C1 is used to indicate
that these coefficients correspond to Parameterization 1, i is
the imaginary unit, x and z correspond to the horizontal and
vertical axes and τ denotes the complex-valued traveltime. τ,x

and τ,z denote the first-order derivatives of τ with respect to
x and z, respectively.

The second-order trial perturbation solution to equa-
tion (1) is defined as

τ = τ0 +
2∑

i=1

τi�i +
2∑

i≤ j=1

τi j�i� j , (6)

with

�1 = ikQ, �2 = η, (7)

where τ0, τi and τi j denote the zeroth-, first- and second-order
traveltime coefficients, respectively. As we will see later, this
formulation of the trial solution ensures that all of the travel-
time coefficients and their governing equations are real valued.

Next, we plug the trial solution from equation (6) into
equation (1) and expand the result with respect to �1 and �2

up to the second-order term. By comparing the coefficients for
the zeroth-order term in the left- and right-hand sides of the
resulting equation, we get the governing equation for τ0:

v2
nτ 2

0,x + v2
z τ

2
0,z = 1. (8)

Next, comparing the coefficients of the first-order terms
in the left- and right-hand sides of that equation, we get the
governing equation for τi (i = 1, 2):

v2
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z τ0,zτi,z = fi (τ0). (9)

Finally, we compare the coefficients for the second-order term
to get the governing equation for τi j (i ≤ j = 1, 2):

v2
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z τ0,zτi j,z = fi j (τ0, τ1, τ2) . (10)

The complete expressions for fi and fi j are shown in
Appendix A.

In the above system of equations (8)–(10), equation (8)
governs the P-wave traveltimes in non-attenuating elliptically
isotropic media. Once τ0 is calculated from equation (8), τ1

and τ2 are computed using equation (9). Having computed
τ0, τ1 and τ2, we can then obtain the second-order traveltime
coefficients τ11, τ12 and τ22 by solving equation (10).

For a homogeneous medium, the solutions of equations
(8) through (10) are given by
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where

τx = x
vn

, τz = z
vz

. (17)

Having computed the above traveltime coefficients, we
can accelerate the convergence of the perturbation-based ex-
pansion series by using the Shanks transform Bender and
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Orszag (1978). We derive the following possible three travel-
time solutions using the Shanks transform:

τ (1) = τ0 + (τ1�1 + τ2�2)2

τ1�1 + τ2�2 − τ11�
2
1 − τ12�1�2 − τ22�

2
2

, (18)
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, (19)

τ (3) = τ0 + τ1�1 + τ11�
2
1 + (τ2 + τ12�1)2�2

τ2 + τ12�1 − τ22�2
. (20)

In these three candidate solutions, τ (1) is obtained by
applying the Shanks transform with respect to both �1 and
�2 parameters, while τ (2) and τ (3) are obtained by applying
the Shanks transform with respect to �1 or �2, respectively.
Later we will compare these candidate solutions and investi-
gate which one results in better accuracy.

Parameterization 2

In Parameterization 2, we use the horizontal velocity vx in-
stead of the NMO velocity parameter vn. The remaining pa-
rameters are common to both parameterizations. Substituting
the relation between the NMO velocity and the horizontal ve-
locity, namely vn = vx/

√
1 + 2η, the eikonal equation (1) can

now be rewritten as
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The subscript ‘2’ in A2, B2 and C2 is used to indicate that
these coefficients correspond to Parameterization 2. The other
parameters are as defined for equation (1).

The second-order trial solution for equation (21) is de-
fined as

τ = τ̃0 +
2∑

i=1

τ̃i�i +
2∑

i≤ j=1

τ̃i j�i� j , (25)

where �1 and �2 are given in equation (7), τ̃0, τ̃1 and τ̃i j de-
note the zeroth-, the first- and the second-order traveltime
coefficients, respectively.

We substitute the trial solution from equation (25) into
equation (21) and expand the resulting equation with respect
to �1 and �2 up to the second-order term. By comparing the
coefficients for the zeroth-order term between the left- and
right-hand sides, we get the governing equation for τ̃0:
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2
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Next, we compare the coefficients of the first term to get
the governing equation for τ̃i (i = 1, 2):
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Finally, by comparing the coefficients for the second-order
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For brevity sake, we list the complete expressions for f̃ i and
f̃ i j in Appendix B.

In the above system of equations (26)–(28), equation (26)
governs the P-wave traveltimes in non-attenuating elliptically
isotropic media. Once τ̃0 is calculated from equation (26),
equations (27) and (28) are successively solved to obtain τ̃i

and τ̃i j .
For a homogeneous medium, the solutions of equations

(26) through (28) are given by
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with
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Figure 1 The exact traveltimes computed for a homogeneous attenuating VTI model. Plots (a) and (b) show the real and imaginary parts of the
traveltimes, respectively. The model parameters are vz = 3.0 km/s, vx = 3.795 km/s, η = 0.167, Az = 0.02498 (corresponding to Q33 = 20),
εQ = −0.33 and δQ = 0.98. From these model parameters, the NMO velocity, vn = 3.286 km/s.

We use the Shanks transform to derive three possible
solutions for Parameterization 2, as follows:

τ̃ (1) = τ̃0 + (τ̃1�1 + τ̃2�2)2

τ̃1�1 + τ̃2�2 − τ̃11�
2
1 − τ̃12�1�2 − τ̃22�

2
2

, (36)

τ̃ (2) = τ̃0 + τ̃2�2 + τ̃22�
2
2 + (τ̃1 + τ̃12�2)2�1

τ̃1 + τ̃12�2 − τ̃11�1
, (37)

τ̃ (3) = τ̃0 + τ̃1�1 + τ̃11�
2
1 + (τ̃2 + τ̃12�1)2�2

τ̃2 + τ̃12�1 − τ̃22�2
. (38)

For equations (37) and (38), the Shanks transform is ap-
plied with respect to �1 and �2, respectively, while in equation
(36), the Shanks transform is applied with respect to both �1

and �2.

N U M E R I C A L T E S T S

In this section, we test the accuracy of the analytic solutions of
the acoustic attenuating vertical symmetry axis (VTI) eikonal
equation. We use the homogeneous VTI model with strong
attenuation anisotropy as described by Hao and Alkhalifah
(2017b).

For a comparison, we compute the exact traveltime by
dividing the propagation distance by the complex ray velocity
along the ray direction. The complex ray velocity vector is ho-
mogeneous for a homogeneous attenuating medium, meaning
that the direction of the real part of the complex ray velocity
vector is parallel to that of the imaginary part. For a given ray
direction, we may invert for the slowness vector by numeri-
cally solving a system of non-linear equations with complex
coefficients (Vavryčuk 2006). The complex ray velocity is di-

rectly calculated by substituting the obtained slowness vector
into the ray tracing equations, allowing us to calculate the
exact traveltime. The detailed procedure to calculate the com-
plex ray velocity for an attenuating anisotropic medium can
be found in Vavryčuk (2006, 2007).

Figure 1 shows the exact traveltimes in the homoge-
neous attenuating VTI model computed using the approach
described above. It is noticeable that the imaginary part of
the traveltimes shows stronger anisotropy signature than the
real part of the traveltimes. These traveltime solutions will
be compared against the solutions obtained for Parameteriza-
tions 1 and 2, and compared with the candidate solutions for
the Shanks transform.

Figure 2 plots the absolute errors in the real part of the
traveltimes computed using the expressions derived for Pa-
rameterization 1. We calculate the real part of the traveltimes
using the second-order perturbation expression from equa-
tion (6) (Fig. 2a), using the Shanks transform expressions de-
rived using (i) parameters �1 and �2 as given in equation (18)
(Fig. 2b), (ii) parameter �1 as given by equation (19) (Fig. 2c)
and (iii) parameter �2 as given by equation (20) (Fig. 2d) .
We observe that the solution given by the Shanks transform
expression in terms of parameter �2 yields the lowest absolute
error (equation (20)).

In Fig. 3, we plot the absolute errors in the imaginary part
of the traveltimes computed using the expressions derived for
Parameterization 1. We calculate the imaginary part of the
traveltimes in a similar way as described above. We observe
that the Shanks transform expression derived using parame-
ters �1 and �2 (equation (18)) is the most inaccurate. The other
three solutions yield similar accuracy.
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(a) (b)

(d)(c)

Figure 2 Absolute errors in the real part of
the traveltimes from the analytic solutions
corresponding to Parameterization 1 in the
considered homogeneous attenuating VTI
model. The plots correspond to (a) the
solution using the second-order perturba-
tion expression from equation (6), (b) the
Shanks transform expression derived us-
ing parameters �1 and �2 as given by equa-
tion (18), (c) the Shanks transform expres-
sion derived using parameter �1 as given
by equation (19) and (d) the Shanks trans-
form expression derived using parameter
�2 as given by equation (20). The model
parameters are shown in the caption of
Fig. 1.

(a) (b)

(d)(c)

Figure 3 Absolute errors in the imagi-
nary part of the traveltimes from the an-
alytic solutions corresponding to Param-
eterization 1 in the considered homoge-
neous attenuating VTI model. The plots
are corresponding to (a) the solution using
the second-order perturbation expression
from equation (6), (b) the Shanks trans-
form expression derived using parameters
�1 and �2 as given by equation (18), (c) the
Shanks transform expression derived us-
ing parameter �1 as given by equation (19)
and (d) the Shanks transform expression
derived using parameter �2 as given by
equation (20). The model parameters are
shown in the caption of Fig. 1.
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(a) (b)

(d)(c)

Figure 4 Absolute errors in the real part
of the traveltimes from the analytic so-
lutions corresponding to Parameteriza-
tion 2 in the considered homogeneous
attenuating VTI model. The plots are
corresponding to (a) the solution using
the second-order perturbation expression
from equation (25), (b) the Shanks trans-
form expression derived using parameters
�1 and �2 as given by equation (36), (c) the
Shanks transform expression derived us-
ing parameter �1 as given by equation (37)
and (d) the Shanks transform expression
derived using the parameter �2 as given
by equation (38). The model parameters
are shown in the caption of Fig. 1.

Similar to Fig. 2, in Fig. 4 we plot the absolute errors in
the real part of the traveltimes, but this time computed using
the expressions derived for Parameterization 2. By compar-
ing the four candidate solutions, we observe that the Shanks
transform expression derived using parameter �2 as given by
equation (38) (Fig. 4d) yields the least absolute traveltime
errors.

Likewise, Fig. 5 plots the absolute errors in the imagi-
nary part of the traveltimes computed using the expressions
derived for Parameterization 2. By comparing the four can-
didate solutions, we again observe that the Shanks transform
expression derived using parameters �1 and �2 (equation (36))
is the most inaccurate. The other three solutions yield similar
accuracy.

Figures 6 and 7 show an one-to-one accuracy comparison
between the analytic solutions from these two parameteri-
zations for a fixed radial distance. For the real part of the
traveltimes at the propagation angles smaller than about
20◦, all the analytic solutions from both parameterizations
are accurate enough, although the analytic solutions from
Parameterization 1 are slightly more accurate. For the real
part of the traveltimes at the propagation angles between 40◦

and 60◦, however, the analytic solutions from Parameteriza-
tion 2 are typically more accurate than the corresponding ones
from Parameterization 1. For the imaginary part of the travel-

times at the propagation angles less than 20◦, all the analytic
solutions are accurate and it is hard to identify which parame-
terization may lead to more accurate results. For the imaginary
part of the traveltimes at the propagation angles between 20◦

and 50◦, an overall comparison shows that Parameterization
1 leads to the more accurate analytic solutions than Parame-
terization 2. At the propagation angles larger than about 77◦,
any analytic solution from Parameterization 2 is much more
accurate than the corresponding one from Parameterization 1
for both real and imaginary parts of the traveltimes. The max-
imum errors of the analytic solutions from Parameterization
2 are smaller than those from Parameterization 1.

An overall comparison of Figs 2–5 and Figs 6 and 7
shows that the Shanks transform expression derived using
parameter �2 from Parameterization 2 (equation (38)) is the
most accurate. As illustrated in plots (b) and (c) of Figs 2–
5, the Shanks transforms with respect to both �1 = ikQ and
�2 = η or only �1 are not helpful to improving the accuracy of
the perturbation solutions.

To support the above analysis on a wide range of mod-
els, we design a number of attenuating VTI models (Table 1)
by referring to Thomsen (1986), Zhu and Tsvankin (2006)
and Shekar and Tsvankin (2011). Tables 2 and 3 compare
the maximum relative errors in the real and imaginary parts
of the traveltimes from the analytic solutions, respectively.
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(a) (b)

(d)(c)

Figure 5 Absolute errors in the imag-
inary part of the traveltimes from the
analytic solutions corresponding to Pa-
rameterization 2 in the considered ho-
mogeneous attenuating VTI model. The
plots correspond to (a) the solution using
the second-order perturbation expression
from equation (25), (b) the Shanks trans-
form expression derived using parameters
�1 and �2 as given by equation (36), (c) the
Shanks transform expression derived us-
ing parameter �1 as given by equation (37)
and (d) the Shanks transform expression
derived using parameter �2 as given by
equation (38). The model parameters are
shown in the caption of Fig. 1.

For the real part of the traveltimes, the Shanks transform
expression derived using only parameter �2 from Parameter-
ization 2 (equation (38)) is the most accurate among all the
proposed analytic solutions. For the imaginary part of the
traveltimes, the analytic solutions 25, 37 and 38 from Param-
eterization 2 are relatively accurate and have a comparable
accuracy. As shown in Table 2, the Shanks transform ex-
pressions derived using both �1 and �2 (equations (18) and
(36)) increase the approximation accuracy for the real part
of the traveltimes by an order of magnitude compared with
the second-order perturbation solutions (equations (6) and
(25)). As illustrated in Table 3, in contrast, the same ex-
pressions (equations (18) and (36)) are much less accurate
than the second-order perturbation solutions (equations (6)
and (25)), respectively. For both real and imaginary parts of
the traveltimes, the Shanks transform expressions derived us-
ing the parameter �1 from each parameterization (equation
(19) or (37)) have almost the same approximation accuracy
as the corresponding second-order perturbation expression
(equation (6) or (25)). For each parameterization, the Shanks
transform expression derived using the parameter �2 (equa-
tion (20) or (38)) has a higher accuracy than other analytic
solutions.

An observation of the results in Tables 2 and 3 shows that
Parameterization 2 results in a more accurate approximation
for both the real and imaginary parts of the traveltimes than
Parameterization 1. Overall, the Shanks transform expression
derived using the parameter �2 from Parameterization 2 is the
most accurate among all the analytic solutions.

In addition to the above analysis, we also find an
interesting phenomenon: for the imaginary part of travel-
times, the Shanks transforms involving �1 as a perturbation
parameter are unhelpful to improving the accuracy of the
second-order perturbation expansions in most examples,
especially for those formulated in Parameterization 1. �1 is
the dominant parameter controlling the imaginary part of
the traveltimes. For �1 = 0, the acoustic attenuating eikonal
equation becomes the non-attenuating one, and the imaginary
part of the traveltimes vanishes. �2 does not have such an
effect on both real and imaginary parts of the traveltimes. For
an attenuating eikonal equation with �2 = 0, the imaginary
part of the traveltimes is still non-zero. Our numerical result
illustrates that a dominant parameter like �1 cannot be
used as a stable parameter to formulate the complex-valued
version of a Shanks transform, although we are unable to
prove this point mathematically.
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(a)

(c)

(b)

(d)

Figure 6 Absolute errors in the real part of the traveltimes at the propagation distance 1 km extracted from Figs 2 (black lines) and 4 (grey
lines). The lateral coordinate θ denotes the propagation angle measured by a counterclockwise rotation from the vertically upward direction.
Plots (a)–(d) correspond to the second-order perturbation expressions (equations (6) and (25)), the Shanks transform expressions derived using
both parameters �1 and �2 (equations (18) and (36)), the Shanks transform expressions derived using parameter �1 (equations (19) and (37)),
the Shanks transform expressions derived using parameter �2 (equations (20) and (38)), respectively.

(a) (b)

(d)(c)

Figure 7 Absolute errors in the imaginary part of the traveltimes at the propagation distance 1 km extracted from Figs 3 (black lines) and
5 (grey lines). The lateral coordinate θ denotes the propagation angle measured by a counterclockwise rotation from the vertically upward
direction. Plots (a)–(d) correspond to the second-order perturbation expressions (equations (6) and (25)), the Shanks transform expressions
derived using both parameters �1 and �2 (equations (18) and (36)), parameter �1 (equations (19) and (37)) and parameter �2 (equations (20)
and (38)), respectively.
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Table 1 Medium parameters for the acoustic attenuating VTI models

Model vz (km/s) vn (km/s) η Az/Q33 εQ δQ

Model 1 2.42 2.538 0.118 0.014/35 −0.3 −0.4
Model 2 1.862 2.082 0.125 0.005/100 0.2 0.1
Model 3 2.0 2.366 0.143 0.008/60 0.4 0.3
Model 4 1.6 1.824 0.115 0.0125/40 −0.3 0.2
Model 5 1.7 1.862 0.083 0.010/50 0.25 −0.15
Model 6 2.5 3.162 0.0625 0.008/60 0.4 0.3
Model 7 5.46 3.751 0.559 0.005/100 0.3 0.1
Model 8 3.962 3.592 0.175 0.010/50 0.3 0.64

The horizontal velocity in Parameterization 2 can be calculated by vx = vn

√
1 + 2η.

Table 2 Maximum relative errors in the real part of the traveltimes from the analytical solutions

Parameterization 1 Parameterization 2

Model Taylor (%) Shanks1 (%) Shanks 2 (%) Shanks 3 (%) Taylor (%) Shanks 1 (%) Shanks 2 (%) Shanks 3 (%)

Model 1 0.38 0.038 0.38 0.0267 0.052 0.009 0.052 0.0075
Model 2 0.44 0.035 0.44 0.033 0.06 0.009 0.06 0.0085
Model 3 0.66 0.054 0.66 0.046 0.09 0.015 0.09 0.0115
Model 4 0.35 0.033 0.35 0.026 0.048 0.009 0.048 0.0068
Model 5 0.135 0.016 0.135 0.0095 0.019 0.0046 0.019 0.0026
Model 6 0.056 0.0085 0.056 0.0038 0.008 0.0026 0.008 0.00095
Model 7 32.58 1.29 32.37 1.28 3.41 0.274 3.38 0.271
Model 8 1.20 0.092 1.19 0.081 0.156 0.026 0.156 0.018

All propagation directions are taken into account to determine the maximum relative errors for all models. In Parameterization 1, the terms ‘Taylor’, ‘Shanks 1’,
‘Shanks 2’ and ‘Shanks 3’ denote equations (6) and (18)–(20), respectively. In Parameterization 2, the similar terms denote equations (25) and (36)–(38), respectively.

D I S C U S S I O N

We take into account Parameterizations 1 and 2 and utilize the
perturbation theory and Shanks transform to derive the ana-
lytic traveltime solutions. The only difference between these
two parameterizations is that Parameterization 1 involves the
normal moveout (NMO) velocity but Parameterization 2 in-

volves the horizontal velocity. Although we use the same per-
turbation parameters, Parameterizations 1 and 2 lead to differ-
ent elliptically isotropic background media. The background
medium corresponding to Parameterization 1 is described by
the vertical velocity and the NMO velocity, while the one cor-
responding to Parameterization 2 is described by the vertical

Table 3 Maximum relative errors in the imaginary part of the traveltimes from the analytical solutions

Parameterization 1 Parameterization 2

Model Taylor (%) Shanks 1 (%) Shanks 2 (%) Shanks 3 (%) Taylor (%) Shanks 1 (%) Shanks 2 (%) Shanks 3 (%)

Model 1 1.91 3.14 1.91 1.62 0.42 1.21 0.39 0.41
Model 2 2.17 3.17 2.18 1.83 0.41 1.89 0.41 0.36
Model 3 2.87 3.67 2.90 2.28 0.60 2.47 0.57 0.51
Model 4 1.84 2.90 1.86 1.56 0.42 1.32 0.39 0.39
Model 5 1.05 1.44 1.08 0.90 0.22 0.75 0.19 0.21
Model 6 0.56 0.75 0.59 0.50 0.15 0.48 0.13 0.14
Model 7 35.79 23.68 35.82 18.87 5.68 19.42 5.70 2.92
Model 8 4.10 4.76 4.18 3.24 0.857 3.90 0.823 0.661

All propagation directions are taken into account to determine the maximum relative errors for all models. The terms ‘Taylor’, ‘Shanks 1’, ‘Shanks 2’ and ‘Shanks
3’ in Parameterizations 1 and 2 are explained in the caption of Table 2.
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velocity and the horizontal velocity. Hence, the background
medium corresponding to Parameterization 2 is closer to the
non-attenuating vertical symmetry axis (VTI) medium than
that corresponding to Parameterization 1, where the non-
attenuating VTI medium is constructed by the real part of
the stiffness coefficients of an attenuating VTI medium. As
a result, the overall accuracy of any analytic solution from
Parameterization 2 is higher than that of the corresponding
analytic solution from Parameterization 1.

CONCLUSIONS

Parameterization 2 results in a more accurate approxima-
tion than Parameterization 1. For each parameterization, the
Shanks transforms involving ikQ as a parameter are not help-
ful to improving the accuracy of the second-order perturba-
tion solution. The Shanks transform expression derived using
only the anellipticity parameter from Parameterization 2 is the
most accurate among all the proposed analytic solutions. It is
noteworthy that the above conclusions are made from only a
limited number of numerical experiments.

Although we only take into account the case of homo-
geneous attenuating vertical symmetry axis (VTI) media, the
traveltime governing equations proposed in the paper can be
used for an inhomogeneous attenuating VTI medium with
constant η and Az. We plan to design numerical techniques
to solve the attenuating VTI eikonal equation for inhomoge-
neous media in the future.
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APPENDIX A: THE EXPRESS IONS FOR fi

AND fi j

The expressions for fi and fi j in equations (9) and (10) are
given by

f1 = 1 + δQv4
z τ

2
0,xτ

2
0,z + εQ(1 − v2

z τ
2
0,z)

2, (A1)

f2 = −v2
nτ 2
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f12 = − v2
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{
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+ εQ(τ0,z + τ2,z)
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APPENDIX B: THE EXPRESS IONS FOR f̃ i

AND f̃ i j

The expressions for f̃ i and f̃ i j in equations (27) and (28) are
given by
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