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ABSTRACT

Hao, Q. and He, Q., 2013. A standard linear solid model representation of frequency-dependent

anisotropy due to multiple sets of aligned meso-scale fractures. Journal of Seismic Exploration, 22:
169-182.

The effective medium theory developed by Chapman (2003) has been used to interpret the
phenomena of frequency-dependent anisotropy in porous media with meso-scale fractures. However,
until recently, no research has attempted to study the propagation of seismic waves in media with
meso-scale fractures. Considering a large amount of expensive numerical computation using
frequency-domain modelling approaches, the key is to obtain the time-domain explicit constitutive
relationships for this model. In this paper, a standard linear solid (SLS) model is used to represent
frequency-dependent anisotropy in media with two sets of aligned mesoscapic fractures. Meanwhile,
we find that the order of the SLS model used to represent Chapman’s model is no more than four.
Consequently, two types of time-domain constitutive relationship are obtained by introducing
auxiliary differential equations. Furthermore, based on the first-order velocity-stress wave equations,
the time-domain numerical modelling can be applied to simulate the wave propagation in such media.

KEY WORDS: frequency-dependent anisotropy, numerical modeling, standard linear solid,
fracture, finite-difference.

INTRODUCTION

Frequency-dependent anisotropy has been observed in porous media with
one or multiple sets of aligned fractures. Chapman (2003) developed a model
for the frequency dependence of the viscoelastic stiffness tensor for an equant-
porosity medium. In this model, aligned meso-scale fractures are embedded in
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a porous medium, which includes micro-scale pores and micro-cracks. This
model has been extended to account for two sets of meso-scale fracture with
different orientations and connectivities (Chapman, 2009). Recently, Tillotson
et al. (2011) demonstrated the validity of this model using laboratory
experiments. The current application of this model has been focused on analysis
of frequency-dependence of shear-wave splitting (Liu et al., 2003a, 2003b,
2006; Maultzsch et al., 2003, 2007; Liu, 2005; Al-Harrasi et al., 2011).

Until now, the characterization of seismic wave propagation in this model
has not been studied. This is due to the complication of viscoelastic stiffness of
this model. It is very difficult to directly apply frequency-domain modelling
method to simulate seismic wave propagation in such a viscoelastic model,
because the inversion of a large complex-valued sparse matrix has to be
performed. This paper is aimed to explicitly represent Chapman’s (2009) model
using the standard linear solid model (SLS) and then apply time-domain
numerical modelling methods, such as finite-difference and finite-element.

REVIEW OF CHAPMAN’S MODEL

Two kinds of scales have been considered in Chapman’s (2009) model.
One is the micro-scale pore, and the other is the meso-scale fracture. Generally,
the viscoelastic stiffness can be written as

p=riq pars

2
Ciju = Clhy — Chyy — E RT,RT RERTaT (1)
m=1

where superscript ‘p’ indicates pore-related variables. Superscript ‘0’ represents
isotropic matrix (reference rock). Superscript ‘m’ represents the m-th set of
fractures. C%;, denotes the elastic stiffness of reference isotropic rock. C%,
represents the stiffness correction for the presence of the pores. It can be written
in standard tensor form as

Ch=1d - (2/3)315135“ + e(5ik5jt + 5i15jk) ) )
where

d = ¢3[[(3>\+4u)/12u][{(1fv)/(1+v)}0?: - p*l — 3)p*] 3)

e = gngSp.[(l - /(7T + 5v)] , )

and ¢) is the pore porosity. p* is the fluid pressure,

p* = H?jo‘?j . ©)
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R7, in eq. (1) is the rotation matrix which is obtained from the unit normal
vector to the m-th fracture surface defined by angles 6, and ¢,,.

a)ys 18 the stiffness correction tensor for the m-th set of horizontal fractures in
which the normal direction is parallel to the vertical axes. The non-zero

components of aj are:

aly = ealMo)(N — £r) — fal ©)
a3y = en[{\ + 2w/} + 2p — ) — £] ™)
aly = eal(Mo)RN — ) — ] — @7, + a3y ®)
aly = enl{\ + W/oT}Q2N + 2p — £) — £1] — %@T +afy) . )
ass = epldp(l — /A2 = vy}l (10)
ags = Y2(al; — aly) . (11)

In eq. (10), r, is the aspect ratio of the m-th set of fracture, v is the
Poisson’s ratio of the reference media. f% (p = 1, 2, 3 and 4) in egs. (6) to (9)
can be represented as

frll)”t = HTjRTaRTbogb , P = 19 2, 37 4 ’ (12)

where the expression for HT; is

Hij(w) = STj(w) + Fu(wHij@) , ' (13)
ST(w) = iwr,nTnf/[(1 + iwr)(1 + KM)] (14)
Fu(w) = 1/ + iwr,) . (15)

In eq. (14), nT denotes the i-th component of the unit vector for the m-th
set of fracture. 7, denotes the corresponding relaxation time,

T = [80(1 — v)(1 + KO/3pl(n/kat , (16)
where ¢ has the meaning of a separation between the adjacent inter-granular

voids. 7 and k represent the viscosity and permeability for the fluid in fractured

rock, respectively. aF denotes the radius of the m-th fracture. The expression
for K? reads

K% = mur/[2(1 — v)k] . a7
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In eq. (17), «; is the bulk modulus of fluid. Moreover, the expression for
H3, in egs. (5) and (13) is

2
HY = (X (e3/oDnin? — (1+KDST(@)] + GelAm(l —v)/(1+v)]5)
m=1

(X (@8/om + KDF,(@) + Gel/am + K) . (18)
K, = 4u/3k; . (19)

SLS MODEL REPRESENTATION OF CHAPMAN’S MODEL

According to egs. (1) to (19), we find that frequency-dependent terms in
Chapman’s model can be written in the form of a SLS model. Consequently, the
viscoelastic stiffness (1) can also be written in the form of SLS models. In the
following derivation, the subscript and superscript m are taken to be 1 and 2.
SLS model representation of H,

We assume that H?j in eq. (18) can be written in the following form:

H = Ay + [A/(1 + iwrs)] + [Ay/(1 + iw7,)] . (20)

Then we can determine those unknown variables in the above equation by fitting
eq. (20) with eq. (18). Finally, coefficients Ay, k = 0,1,2 are obtained,

Ao = Yoy > (21)
Ajy = [&(vi—Yo) (12— 73) + es(voy—vo) (T — )1, —75) (22)
Mg = [&;(v1ii—Yo) (1= 7)) + e3(vay—Yop) (T —T/(7,—73) (23)
734 = {[e)(1,+7) + e, + ey + VA2 24)

A = [e(1,+1) + &1, + e57]* — 4e,7,7,
= 7'%(31 + e3)2 + 7'%(31 + 62)2 + 27i7y(606; — €)) (25)
e = Be—i/Bo + B +B) , k=123, (26)

Yeij = %qi/Bx » k =0,12, 27)
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aOij = (3§0 /4#)[(1_0)/(1+U)] ij o alu = nnnj(ﬁo /ac)

Qo n%njz(so(z)/ag) s (28)
Bo = Bep/du)(1 + K)) , B, = (/o)1 + KD ,
B, = (p9lo)(1 + KY) . (29)

It is easily demonstrated that A is positive if two sets of fractures exist.

SLS model representation of other frequency-dependent terms

There are some other terms in Chapman’s (2009) model that are needed
to be expressed in terms of the SLS models in addition to H3,.

Inserting eq. (20) into eq. (13) and considering eqs. (14) and (15), we can have,
HY = yoy + [yTy/(A+iery)] + [y5i/(1+ien)] + [y5/(1+ier,)] . (30)
Then, substituting eq. (30) into eq. (12), the expression for f? becomes
ff = fho + [/ +iwry)] + [f2/(1+iwr)] + [f2/(1+iwr)] . (31)
And then, the expressions for a7, can also be written in the following form,
afy = al) + [afj/(1+iwr)] + [a7%/(1+iwTy)] + [T/ (1+iwr)] . (32)

To represent Chi, by the SLS model, we consider egs. (5) and (20), then rewrite
p* in the following form,

p* = p° + [pY/(1+iwry)] + [p/(1+iwr,)] . (33)
Furthermore, the expression for d in eq. (3) can be written as

d = d + [d/(1+iwr)] + [/ +iwr,)] . 34)
Finally, considering eqs. (2) and (34), C®; i can be expressed by the SLS model:

Coy = C¥y + [Ch /(1 +iwTy)] + [CB /(1 +iwT,)] . (35)

Due to page limits, the expressions for yyy, ff,, a7%, p¥, d¥, Chr k =
0,1,2) are not shown in this section.
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SLS model representation of C;,

According to egs. (32) and (35) we can represent the frequency-dependent
elastic stiffness tensor Cy, in eq. (1) by the following fourth-order SLS model,

4 T -
Cya = M2, — ) IMg/(1 + iwr)] , h=1234 , (36)
h=1

It is noted that 7, and 7, correspond to the relaxation time in eq. (16) for
two sets of aligned fractures, respectively. Similarly, 7, and 7, are the mixed
relaxation time for the two sets of aligned fractures in eq. (24). In addition, the
other terms in eq. (36) are given below,

M??li(l = C(i)jkl - Cg(j)kl - C}J(')kl - C%(j)kl >

M}jkl = C%}kl >

M%jkl = C%}kl s (37
M?jkl = Cﬁ)}kl + C%jzkl + C%Jzkl s

M‘i‘jkl = C?Jzkl + Cﬁkz + Cﬁk: >

and
CT?kl = R™ Rm™ RTrRTsamrs , = 0’1’2’3 : (38)

1p=iq

VELOCITY-STRESS CONSTITUTIVE RELATIONSHIP IN THE TIME
DOMAIN

In the time-domain staggered grid finite-difference method, the
velocity-stress constitutive relationships are needed to simulate the propagation
of seismic waves. However, eq. (36) cannot be directly applied to the
velocity-stress staggered grid finite-difference method. Here, we derive two
types of time-domain velocity-stress formed constitutive relationships by
introducing different auxiliary differential equations.

Constitutive Relation A

Based on the effective viscoelastic stiffness tensor in eq. (36), the
frequency-domain constitutive relationships can be written in the following
form,
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4 —
= MBiEg — 3 IMp/( + iwr)]e (39)
ijki€kt T 2 [ iikt/ ( leH)]akl ,
h=1

where &; denotes stress tensor and &, denotes the strain tensor. The tilde sign
denotes frequency-domain.

In order to obtain the time-domain constitutive relationship A, we

introduce a memory tensor ru",

B = —[iwMl /(1 + iwr)lg, , h=1234 . (40)

Consequently, we can obtain the time-domain stress-velocity constitutive
relationship A,

30,/0t = M2i(u,/ox) + 1, (41)
4 —_
“Yif @)
h=1
il + 7 @rl/ay = ~Mp(du/ox) , b =1234 . 43)

Constitutive relationship A is similar to that given by Carcione (1995, 1999) for
viscoelastic, anisotropic media.

Constitutive Relation B

Besides constitutive relationship A derived above, there is an alternative
way to construct the time-domain constructive relationships between the stress
and strain tensors, which is called constitutive relationship B. We first rewrite
the effective viscoelastic stiffness (36) into the following form:

4 —
Cyu = Chiy + X, [wCii /(1 + iwr)] | 44)
h=1
where,
C(i)jkl = Ukl ZMukl > (45)

Cijhkl = THMSkl , h=1234 . (46)
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Introducing auxiliary stress tensors followed by the inverse Fourier
transformation, time-domain constitutive relations B can be obtained,

4
o= of , @)
h=0
d0%y/ot = Ch(uy/dx) (48)
ol + Tﬁ(aai*}/at) = Clulox) , h=1234 , (49)

where o;; denotes the stress tensor, ai}j‘ (H = 0,...,4) denotes the auxiliary stress
tensor, and v; denotes the i-th component of the particle velocity vector.

Constitutive relationship B is similar to that derived by Dhemaied and
Rejiba (2011) for viscoelastic isotropic media through the auxiliary differential
equation method.

Therefore, the solution to the wave propagation for Chapman’s (2009)
model has two types of first-order velocity-stress wave equations in the time
domain. The first is to combine constitutive relationship A in eqs. (41) to (43)
and velocity-stress formed dynamic equation. The other is to use constitutive
relationship B in eqs. (47) to (49) and dynamic equation. Based on one of these,
we can design a complete velocity-stress staggered grid finite difference methods
to model seismic wave propagation.

NUMERICAL EXPERIMENTS
Comparison of SLS and Chapman’s model

To verify the validity of the SLS representation of Chapman’s (2009)
model, we compare the viscoelastic stiffness predicted by eq. (44) and that
directly obtained by Chapman’s (2009) model in eq. (1) for a wide range of
frequencies.

Here we consider a fractured rock with v, = 4 km/s and vy = 2 km/s,
corresponding to the P- and S-wave velocities of the background isotropic
medium and the density is 2.2 g/cm?® and porosity is 1%. The saturated fluid is
gas with acoustic velocity of 341 m/s, density of 0.057 g/cm? and a viscosity of
1.36 X 107° Pa-s. There are two sets of fractures. For the first set of fractures,
the radius is 15 m, the volume fraction is 0.1, and the aspect ratio is 0.0001.
The first set of fractures is assumed to be along the horizontal plane. For the
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second set of fractures, the radius is 10 m, the volume fraction is 0.05, the
aspect ratio is 0.0001. The second set of fractures is assumed to be vertical with
the normal direction in the y-axis. Moreover, the permeability of the
background medium is 1 mD.

We now calculate the effective viscoelastic stiffness variation with
frequency using Chapman’s (2009) formulas and compare with the SLS formulas
derived in this paper. The non-zero viscoelastic stiffness elements are compared
in Fig. 1, which indicates that the SLS representation of Chapman’s (2009)
model is exact at a large frequency range.
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Fig. 1. Comparison of the viscoelastic stiffness calculated by the Chapman’s model (black solid
lines) and the SLS model (coloured dot line).

Effect of fluid saturation on wave propagation

In this example, we study the fluid saturation on the seismic propagation
using numerical modelling of seismic wavefield in the frequency-dependent
anisotropic media. Constitutive relationship B proposed in this paper is adopted.
According to the velocity-stress wave egs. (47) to (49), we apply the staggered
grid pseudo-spectral method in the following example proposed by Carcione
(1999) to simulate wave propagation. First-order spatial derivatives are
calculated using the Fourier pseudo-spectral method. The first-order temporal
derivatives are approximated by second-order finite-difference.
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In Fig. 2, we consider a vertically fractured model with one set of
fractures. The model consists of 300 X 300 points with a grid spacing of 10 m.
The parameters for the background isotropic medium are the same as that given
in the earlier example in Fig. 1. To see the effect of attenuation on seismic
waves, porosity is increased to 10%. The fracture radius is 15 m, the volume
fraction is 0.1, the aspect ratio is 0.0001. Dipping angle is 90 degrees (i.e., the
fractures are vertically assigned), and the azimuthal angle is 45 degrees. The
fluid parameters are listed in Table 1. Moreover, the permeability of this model
is 1 mD for all three types of fluids.
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Fig. 2. (a) Homogeneous vertically fractured model with strike angle ¢ = 45°. (b) A map view of
this model.

Table 1. Fluid parameters.

Par.  Sonic Velocity Density Bulk modulus Viscosity
(m/s) (kg/m?) (Gpa) (Pa‘s)
Fluid .
Oil 1250 800 1.2500 2 X 1072
Brine 1527 985 2.2968 4.36 x 107*

Gas 341 57 0.0066 1.36 X 1073
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The time interval is 0.1 ms. A vertical force source is used with a Ricker
wavelet of a dominant frequency of 35 Hz as shown in Fig. 3 and the source is
placed in the centre of the model.
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Fig. 3. A Ricker wavelet.

Fig. 4 shows the three velocity components computed for each fluid. A
force acting in the z-direction can produce not only x- and z-components but
also y-component. Shear-wave splitting is evident for the receivers near the
source (near offsets). All nine plots are shown in the same scale in order to
compare the amplitude variations. Obviously, the attenuation of seismic waves
in gas saturated media is very large. With the increasing in offset, the
attenuation becomes clear. However, for the case of oil and brine saturations,
the difference is very small.

Fig. 5 shows the three components of particle velocities at Trace no.50.
We notice that for the case of gas saturation, the amplitudes of qP-, qS1- and
qS2-waves are the smallest among three cases of fluid saturation. The
amplitudes for brine saturation model are weaker than the case of oil saturation.
We can also notice that the arrival time of qP-wave for the case of brine
saturation is earlier than for the case of oil saturation, which means that
gqP-wave propagates faster in brine saturated fractures than in oil saturated
fractures. In contrast, the arrival times of qS1- and qS2-waves for the case of
brine saturation is later than for the case of oil saturation, indicating qS1- and
qS2-waves propagate in brine saturated fractures in a slower velocity than in oil
saturated fractures. Because the amplitudes of qP-, qS1- and gS2-waves
propagation in gas saturated fractures are so small that we cannot determine the
relationship of arrival time between the cases of gas saturation and the other two
cases.
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Fig. 4. Three component particle velocities for oil, brine and gas (all plots are displayed in the same
scale). The three rows from top to bottom correspond to the cases of oil, brine and gas, respectively.
The three columns from left to right correspond to the x-, y- and z-component of particle velocities,
respectively.
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Fig. 5. Particle velocities at trace No. 50.

CONCLUSIONS
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Viscoelastic stiffness of Chapman’s (2009) model for two sets of aligned
fractures can be decomposed into a fourth-order SLS model. By transforming
the frequency-domain SLS model into the time-domain, we can obtain two types
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of constitutive relationship that can be used in the simulation of seismic wave
propagation.

Numerical modelling of wave propagation in homogeneous and vertically
fractured media shows that the attenuation of qP-, qS1- and qS2-waves for the
case of gas saturation is larger than the other two cases (oil and brine
saturations). This phenomenon can be used to qualitatively distinguish fractured
gas sandstones from fractured oil and brine sandstones.
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