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ABSTRACT

Hao, Q. and Stovas, A., 2014. P-wave diffraction and reflection traveltimes for a homogeneous 3D
TTI medium. Journal of Seismic Exploration, 23: 405-429.

Diffractions are produced by material discontinuities. Diffraction traveltime contains
information about the velocity along the entire ray path, which is useful for improving the image
quality. We derive an analytical midpoint-offset diffraction traveltime approximation for P-waves
in a 3D homogeneous transversely isotropic medium with a tilted symmetry axis (TTI) under the
assumption of weak anellipticity of the medium. From the proposed diffraction traveltime
approximation, we also derive the P-wave reflection traveltime for a dip-constrained transversely
isotropic (DTI) model. Two numerical examples illustrate the accuracy of both approximations for
diffraction and reflection traveltime. One example is provided to analyze the shape of midpoint-offset
diffraction traveltime. A short discussion on possible applications in heterogeneous TTI and
multi-layered DTI models concludes the paper.

KEY WORDS: diffraction, traveltime, anisotropy.

INTRODUCTION

The diffracted wave in a seismic record includes information on small
scale discontinuities of the subsurface. Diffraction can be used in high-resolution
imaging, local velocity analysis, etc. The diffraction traveltime in homogeneous
anisotropic media can be represented in form of a double-square-root (DSR)
equation, which is also valid for media with moderate lateral velocity variation
(Landa and Keydar, 1998; Dell et al., 2013). The DSR equation, Cheop’s
equivalent pyramid, is widely used to implement the Kirchhoff time migration
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in isotropic media (Claerbout, 1985, p.164-166; Alkhalifah, 2000b). Alkhalifah
(2000b) derived the Cheops’ pyramid for homogeneous transversely isotropic
media with a vertical symmetry axis (VTI).

In this paper, we derive an analytical approximation for midpoint-offset
P-wave diffraction traveltime from a point diffractor in a 3D TTI medium under
the assumption of weak anellipticity of the medium. In the derived diffraction
traveltime equation, both source and receiver slownesses are analytically
approximated by a combination of Taylor expansion with respect to the
anellipticity parameter and its Shanks transform (Bender and Orszag, 1978).
This technique is first used by Alkhalifah (2000b) to obtain the midpoint-offset
traveltime approximation for VTI media. Recently, similar techniques were
applied to derive the offset-midpoint traveltime equations for 2D TTI (Hao and
Stovas, 2013; Stovas and Alkhalifah, 2013) and 3D horizontal transversely
isotropic (HTI) media (Hao et al., 2013). As a straightforward consequence of
the diffraction traveltime approximation, the P-wave reflection traveltime is
derived for a 3D homogeneous dip-constrained transversely isotropic (DTI)
model (i.e., TI medium with the symmetry axis orthogonal to the reflector).
Reflection moveout approximation has proved helpful in anisotropic velocity
model-building (e.g. Grechka et al., 2002; Tsvankin and Grechka, 2011). In
recent years, there has been a significant progress in extending reflection
traveltime tomography to TTI media (Bakulin et al., 2010; Zhou et al., 2011;
Wang and Tsvankin, 2013a, 2013b).

This paper is organized as follows: we start with the exact diffraction
traveltime represented in terms of source and receiver slownesses in a general
anisotropic medium for a TTI medium. In the following section, we derive the
analytical slowness approximation. Then, we obtain the reflection traveltime for
P-wave in a 3D homogeneous DTI model from the midpoint-offset diffraction
traveltime approximation for 3D TTI media. The accuracies of the proposed
diffraction and reflection traveltime formulas are tested on homogeneous
transversely isotropic (TI) models. At the end, we briefly discuss the application
of the proposed approximation in calculating P-wave diffraction and reflection
traveltime for heterogeneous TTI media and the multi-layered DTI media.

EXACT DIFFRACTION TRAVELTIME IN A HOMOGENOUS
ANISOTROPIC MEDIUM

We consider a general anisotropic homogeneous medium with the
acquisition geometry shown in Fig. 1. The position of the single diffractor is
denoted by (X,, X,, z). The exact diffraction traveltime for P-wave in this
medium is a sum of the source-diffractor traveltime and the receiver-diffractor
traveltime,
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T = |qsz + psi¥s: + Ps2¥s2| + |qu t Pgi¥e + szyg2| ) (1)

where (yg;, Ys,) denote projections of the lateral distance between the diffractor
and the source given by (ys;, ¥s) = (X;—m;+h;, X,—m,+h,) and (y,, ¥,0)
denotes projections of the lateral distance between the diffractor and the receiver
given by (y,, ¥y) = (X;—m; —h;, X,—m,—h,). The vectors (ps;, ps,, —qs) and
(Pg1» Pg2» —9y) are the source and receiver slownesses and satisfy the following
conditions,

aq/dp; = —yi/z , )
0q/0p, = —y,/z . 3)

Here, (p;, p,, q) and (y,, y,) are either (pg;, Ps,, qs) and (yg;, Ys,) for source or
(Pg1> Pg» 9y and (¥, Yy) for receiver.

Egs. (1)-(3) apply to the P-wave diffraction traveltime in source-receiver
and midpoint-offset domains.

b

Fig. 1. Acquisition geometry for diffracted P-waves in a homogeneous anisotropic medium. Source
S, receiver G and midpoint M = (m;,m,,0) are located on surface . The half-offset vector h =
(h,,h,) equals a half of the distance vector from source S to receiver G. Point I = (x,,X,,z) denotes
a diffractor. Point I' = (x,,X,,0) is the projection of diffractor I on surface . Vector y, = (y,,Ys)
denotes the lateral distance from source S to diffractor I, and vector y, = (y,,,y,,) denotes the lateral
distance from receiver G to image point I. The seismic rays IS and IG have source slowness
(Py1,P22> —Q,) and receiver slowness (p,;,py, —4,), respectively.
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HORIZONTAL AND VERTICAL SLOWNESS APPROXIMATION

P-wave propagation in a homogeneous VTI medium is described by the
vertical velocities of P- and S-waves and two Thomsen parameters, ¢ and &
(Thomsen, 1986; Tsvankin, 2001, p.18). In practice, we can ignore the
influence of SV-wave symmetry-direction velocity on the P-wave velocity and
traveltime in VTI media (Tsvankin and Thomsen, 1994; Alkhalifah, 1998).
Hence, the velocity and traveltime of the P-wave in VTI media can be
characterized by the vertical velocity of the P-wave v,, the normal-moveout
velocity v,,, = vov/(1+28) and the anellipticity parameter = (e—8)/(1+29).
Besides the three parameters mentioned above, two additional parameters, the
tilt 6 and azimuth ¢ of the symmetry axis are needed to describe 3D TTI media.

According to Alkhalifah (1998, 2000a), the 3D slowness surface for
P-wave in a VTT medium in the acoustic approximation (the shear wave velocity
along the symmetry axis is set to zero) is written in the following form,

Fyn = v%Q3[1 - 2”7”ﬁmo(P31+P\2/2)] + (1+277)U121mo(P31+P%2) -—1=0,4)

where (p,;, p,,) and q, are horizontal and vertical slowness components,
respectively. The slowness surface in a TTI medium can be obtained by a
simple rotation of VTI slowness surface, shown in Fig. 2. The 3D slowness

surface equation for a TTI medium is obtained by applying the slowness rotation
given by
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Fig. 2. Geometry of slowness coordinate system. The slownesses (Pv1,Pv2,9,) correspond to a VTI
medium, and (p,,p,,q) correspond to a TTI medium. 6 denotes the tilt of the symmetry axis
measured from the g-axis. ¢ denotes the azimuth of the symmetry axis measured from p, to the
horizontal projection of p,, on the p,-p, plane. p,, is located on the Pi-p; plane.
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o cosp cosf —sing cose sinf | py;
p, | = | sing cosf cose sing sin | p,, | 5)
q —sinf 0 cosf q,

where ¢ is the azimuth of the symmetry axis measured from the x-axis to its
horizontal projection, 6 is the tilt of the symmetry axis measured from the
z-axis, (p;, p,) and q are the horizontal and vertical slowness components in the
TTI medium. The P-wave slowness surface in the TTI medium is defined as

q = 4q@: P2 > ©6)
and the one for the corresponding VTI medium is
G = @(Pvi> P - O

From egs. (5)-(7), we derive the relationships between the slowness
derivatives in VTI and TTI media (see Appendix A),

dq,/0p,; = —[(0q/0p,)cosecosf + (dq/dp,)singcosd + sind]
/[(3q/3p,)cosesing + (dq/dp,)singsingd — cosf] )
dq,/dp,, = [(8q/dpy)sing — (3q/dp,)cos¢]

/[(0q/dp,)cosesing + (3q/dp,)singsing — cosf] . 9)

Substitutions of eqs. (2) and (3) into eqs. (8) and (9) results in the explicit
expressions for dq,/dp,; and dq,/dp,,,

dq,/dp,; = —[y cosgcosf + y,singcosf — zsinf)]

/[y ,cosesinf + y,singsinf + zcosf] , (10)
9q,/dp,, = [y,sing — y,cos¢]

/[y cosesing + y,singsind + zcosf] . (11)

To derive the VTI slowness components p,; and p,,, we introduce the
following relations,

Pyi = p,cosa (12

P, = p,sina , (13)
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where p, denotes the magnitude of the horizontal slowness component given by

9q,/0p, = /{(3q,/dp,,)* + (8q,/0p,n)*} = ¢ . (14)

Here, c is a new parameter which is obtained from egs. (10) and (11),

¢ = J{(y)? + (zsinf — cosfy})’}/|y;sinf + zcosf| (15)
with

yi = y;sing — y,cose , (16)

y; = y,C08¢ + y,sing 17

and o denotes the azimuth of horizontal slowness projection measured from
x-axis in the VTI medium, which is also obtained from eqs. (10) and (11),

tana = (9q,/9p,,)/(3q,/dp,;) = —[y,sing — y,cose]
/[y cospcosf + y,singsind — zsinf] . (18)

From egs. (4) and (14), we obtain quartic equations with respect to slowness
projections squared p? and g2, independently,

Piamo — V(=1 + 2pXZ )’ [—1 + plZ,(1+27)] =0 , (19)
Cquy — Vime(1 — @)1 + 29 — 2¢2in)’ = 0 . (20)

With the help of Taylor expansion and Shanks transform, we derive the
analytical approximations for p? and q? from egs. (19) and (20) under the weak
anellipticity assumption. The final expressions for p? and g? are given in egs.
(B-9) and (B-10) in Appendix B.

ANALYTICAL APPROXIMATION FOR MIDPOINT-OFFSET
DIFFRACTION TRAVELTIME

It is obvious that the peak of the Cheops’ pyramid in isotropic media
corresponds to the fastest ray with zero-offset. This is also valid for a single
diffractor in 3D homogeneous TTI media. The surface position and the
traveltime of the fastest ray are easily determined by picking the peak of the
midpoint-offset traveltime pyramid. For the fastest ray, the horizontal projection
of its slowness equals zero. We identify the position of the single diffractor by
the fastest ray,
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z = t/(2q) , (21)

X, =X} — Z(aq/apl)l'p;o ) (22)
p,=0

X, = X3 — 2(3q/dp,)| pi=0 ° (23)
p,=0

where (x,, X,, z) denotes the position of the single diffractor; (x, x9) and t,
denote the surface position and two-way traveltime for the zero-offset fastest
ray, respectively; (p; = 0, p, = 0, q,) denotes the slowness for the fastest ray;
the vertical projection of its slowness q, = q((p; = 0, p, = 0) is given by
g5 = 2/[vicos?0 + (1+2n)visin’0
+ J{[vicos?d — (1+2n)visin®0)* + sin*(20)vdv2}] . (24)

Substitution of egs. (21)-(23) into eq. (1) leads to the midpoint-offset diffraction
traveltime for a single diffractor in a 3D homogeneous TTI medium,

T = |(1/2q9)teqs + PaYs + PuYs|
+ |(1/2q0)t0qg + plegl + pg2Yg21 > (25)

where (y,;, ¥y) and (y,, Yy) are represented in terms of midpoint (m,;, m,) and
offset (h,, h,),

(Yo1» ¥) = (Xy—my+hy, X,—m,+h,) , (26)
(Y15 Ye) = (X;—m;—hy, X,—m,—h,) . 27)

Here the lateral projection of the single diffractor is represented in terms of the
fastest ray,

0

X, = X; + (1/4qp)te¢sin(20)cose (28)
X, = X3 + (1/4qp)to¢sin(20)sing (29)

with
¢ = [—(1+2nv2 + v3(1+2nq3vicos20)]

/(1 +2n)v2sin® + v3(cos’6 —nqdvisin20)] . 30)
Note that the source and receiver slownesses (py;, Py, qs) and (pg;, Py, q,) given

in eq. (25) are analytically determined in previous section in which the position
(x;, X,, z) of the single diffractor is replaced by egs. (21), (28) and (29).
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REFLECTION TRAVELTIME IN A 3D DTI MODEL

We consider the reflection traveltime for P-wave in a 3D DTI model in
which the symmetry axis is normal to the reflector. Let the reflection plane in
a 3D DTI model be described in Cartesian coordinates by the general equation,

nXx +ny +nz—-—d=0, 31)

where d is the normal depth from the coordinate origin to the reflector, and the
unit vector (n,,n,,n;)" is normal to the reflector. Since the symmetry axis in the
DTI model coincides with the normal vector to the reflector, the unit vector

(n;,n,,n;)" is represented in terms of the azimuth ¢ and tilt  of the symmetry
axis,

(n,,0,,0;)T = (cosesinb,singsind,cosd) . (32)

To specify the position of the reflection point, we assume that the
midpoint in the acquisition system is located at the coordinate origin, the radial
half-offset h and the acquisition azimuth v measured from the x-axis (seen in
Fig. 3). By considering eqs. (31) and replacing the normal depth d given in eq.
(31) by the zero-offset two-way traveltime 7, and P-wave on-symmetry-axis
velocity vy, we derive the coordinates of the reflection point (xg,yg,Zz) given by

Fig. 3. Schematic plot of reflection ray SPR in a DTI model. Symbols S, O, and R denote source,
midpoint and receiver, respectively. Line segment OM denotes the zero-offset ray, which is normal
to reflector L. R’ is the image point of R with respect to the reflector £. Q is the midpoint of line
segment RR'.  denotes the acquisition azimuth measured from the x-axis.
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Xg = [2h%/(vy7o)](nco8y + mysiny)[(n3+nd)cosy — nymysiny] + Yanyver, L(33)

yr = [2h%/(vy7o)l(mycosy + nysiny)[(n?+nd)siny — nyn,cosy] + Yamyuer, ,(34)

zx = —[2h%*/(vy7o)Ins(nyc08y + mysiny) + Yangury . (35)
By considering the offset-midpoint traveltime and the slowness
approximation mentioned in previous section, we consequently derive the
reflection traveltime for a P-wave in a DTI model,

T = 2hp /{1 — sin20cosX(y—¢)} + voToqy » (36)

where 7, is the zero-offset two-way traveltime; v, is the P-wave velocity along
the symmetry axis; p, and q, are slowness projections parallel and normal to the
reflector, respectively; the explicit expressions for p, and q, are given in
equations (B-9) and (B-10) in which parameter c is given by

¢ = dq,/dp, = [2b/(7ove)]/{1 — sin2fcos*(y—¢)} . 37
Eq. (36) illustrates that the P-wave reflection traveltime in a DTI model
can be represented in terms of the corresponding VTI slowness projections.

Note that the maximum half-offset for reflection equation (36) is
azimuth-dependent and given by

hpax = Tove/[28inf | cos(y—¢)|] . (38)
For a DTI model with the dip of zero, eqs. (36) and (37) are reduced to
T = 2hp, + v47oqs (39)
¢ = dq,/dp, = 2h/7gv, , (40)

which correspond to the P-wave reflection traveltime for a horizontal VTI layer.

NUMERICAL EXAMPLES

In the first example, we check the accuracy of diffraction traveltime
approximation (25) in homogeneous 3D TTI media. The exact traveltime is
calculated by two-point ray tracing method (Reeshidev and Sen, 2005). The
medium parameters are v, = 2000 m/s, 6 = 0.2 and = 0.2. The azimuth of
the symmetry axis is ¢ = 0. We change the tilt of the symmetry axis to observe
its influence on the distribution of traveltime error. The lateral position of the
peak (corresponding to the fastest ray) in the diffraction traveltime surface t =
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t(m,,my,h;,h,) is set as (x3,x3) = (0,0). The two-way diffraction traveltime
corresponding to this peak is taken as t, = 3 s. Figs. 4-6 show the relative error
of diffraction traveltime as a function of midpoint for several fixed offsets. For
the case of zero-offset (h;,h,) = (0,0), it is obvious that the tilt of the symmetry
axis affects the distribution of traveltime error: relatively large error shifts
towards the peak of the traveltime surface with an increase in tilt. However, this
phenomenon becomes unclear for the case of nonzero-offset (h;,h,) = (2km,0)
and (h;,h,) = (4km,0). From Figs. 4 to 6, we can also see that the maximum
relative error is no more than 0.3%.

mi(km)

m1(km)

Fig. 4. Relative error in diffraction traveltime as a function of midpoint (m,,m,) in TTI media. In
all plots, the source-receiver half-offset are kept as (h;,h,) = (0,0). The TI medium parameters for
all plots include v, = 2 km/s, & = 0.2 and n = 0.2. The azimuth of the TI symmetry is ¢ = 0. The
tilt of the symmetry axis is § = 0° (a), § = 30° (b), = 60° (c) and 6 = 90° (d), respectively. The
two-way traveltime and the lateral positions for the peak in diffraction traveltime surface are taken
ast, = 3s.
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In the second example, we employ eq. (25) to synthesize midpoint-offset
traveltime pyramids. Fig. 7 shows the traveltime pyramids computed for
different acquisition azimuth. In Fig. 7, we use the radial midpoint m and radial
offset h for a specified acquisition azimuth vy. Here m and h are defined as m
= /(m?,m3) and h = +/(h3,h3), where both midpoint (m,,m,) and offset (h,,h,)
correspond to acquisition azimuth . Only the azimuthal variation from 0° to
90° is considered, since the traveltime is symmetric with respect to y-axis for
the TTI model in Fig. 7. For all plots in Fig. 7, the lateral position of the peak
(corresponding to the fastest ray) in the diffraction traveltime surface is located
at the origin of the (m,h) coordinate system by setting (x},x3) = (0,0) given in
eqs. (28) and (29). Fig. 8 shows several slices extracted from the traveltime
pyramids in Fig. 7 for m = 0 (common-midpoint case), h = 0 (common-offset
case) and the case m = h. From both figures, we can see that the traveltime
decreases as the azimuth increases and the traveltime pyramid becomes much
flatter. This effect becomes more pronounced for large values of offset and
midpoint.

-4 ; 0.3
“ 0.2
‘é“ F B
= 0 R
E
2 ; 0.1
4 0
4 2 0 2 4
mz(km)
(a) (b)
-4 0.3
-2
= 0.2
< 0 R
E 1
2 0.
4 0
4 -2 0 2 4
mz(km} mz{km)
(©) (d)

Fig. 5. Similar to Fig. 3 but the fixed half-offset is (h,,h,) = (2km,0).
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In the last example, we test the accuracy of reflection traveltime
approximation (36) in several DTI models with different dips and anellipticies.
The exact traveltime is calculated by two-point ray tracing method (Reeshidev
and Sen, 2005). Figs. 9-11 show the relative error of traveltime approximation
(36). Note that the error curve breaks down when the corresponding offset
reaches the maximum one given in eq. (38). We can see that the accuracy of
reflection traveltime approximation (36) is not sensitive to the dip of the DTI
model. But the value of anellipticity significantly affects the accuracy of
traveltime approximation (36). By comparing the plots in Figs. 9 to 11, we can
see that reflection traveltime approximation (36) has a significant error at large
offsets for n = 0.3 because approximation (36) is derived under the assumption
of weak anellipticity for the DTI model.

m,l(km)

m1{km)

Fig. 6. Similar to Fig. 3 but the fixed half-offset is (h,,h,) = (4km,0).
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DISCUSSION

This paper introduces an analytical method to approximate P-wave
diffraction traveltime in a homogeneous 3D TTI medium. For heterogeneous
TTI media, the diffraction traveltime cannot be directly calculated by this
method. However, the heterogeneous medium can be treated as an ‘effective
homogeneous’ one. The effective medium parameters can be obtained by fitting
the computed traveltime with the corresponding diffraction event around its
peak. Obviously, the effective parameters represent the average property of a
heterogeneous medium along the path of the fastest ray. The diffraction
traveltime is approximately calculated by substituting the effective medium
parameters into traveltime approximation (25).

4 6 4
= -2
_— 5 —
£o £ o
E 4 E
2 2
4 3 4
-4 -4

m(km)
m(km)

(© (d)

Fig. 7. Diffraction traveltime for P-wave in a 3D TTI medium as a function of half offset h and
midpoint m with different acquisition azimuth y = 0° (a), v = 30° (b), v = 60° (c), and vy = 90°
(d). The TI medium parameters include v, = 2 km/s, § = 0.2 and n = 0.2. The tilt and the azimuth
of the TI symmetry axis are 6 = 60° and ¢ = 0, respectively.
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Reflection traveltime approximation (36) is valid only for the single-layer
DTI model. For the multi-layered DTI model, we derive the effective medium
parameters in Appendix C. By replacing the TI medium parameters by the
corresponding effective medium parameters, traveltime approximation (36) can
be employed to approximately calculate the reflection traveltime for P-wave in
multi-layered DTI media.

b:44 -2 0 2 4 §4 -2 0 2 4
h(km) m(km)
(a) (®)

T(s)

Fig. 8. Comparison of diffraction traveltimes extracted from traveltime pyramids in Fig. 7 for m
= 0 (left top), h = O (right top) and h = m (left bottom). Blue, black, red and green lines
correspond to acquisition azimuth y = 0°, v = 30°, v = 60°, and v = 90°, respectively.
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CONCLUSIONS

The analytical approximation of P-wave diffraction traveltime in 3D TTI
media is derived under the assumption of weak anellipticity of the model. In this
approximation, the source and receiver slownesses in a TTI medium are
analytically derived by rotating the approximate slowness in the corresponding
VTI medium. This approximation can be useful for rapidly calculating the
P-wave diffraction traveltime in the 3D TTI medium with the weak or moderate
anellipticity (n < 0.2).The derived reflection traveltime approximation is also

valid at large offset for the homogeneous DTI model with the weak or moderate
anellipticity (n < 0.2).

0.04 0.25
y=0
0.03 s o
y=nl3
=2 0.15
* 0.02 / =
0.1
0.01 —
ol—Z 0
0 1 2 3 4 5 0
h/d
() (b)
1
08}
06}
®
04}
02}
0
0

(c)

Fig. 9. Relative error of the reflection traveltime eq. (36) as a function of the normalized half-offset
(the ratio of half-offset h to the normal depth d in the DTI model) in three 3D DTI models with 7
= 0.1(a), n = 0.2 (b), » = 0.3 (c). y denotes the acquisition azimuth measured from the x-axis.
In all models, the zero-offset two-way traveltime is taken as 7 = 3 s; the TI medium parameters are
vy = 2 km/s, § = 0.2; the azimuth and the tilt of the TI symmetry axis are ¢ = 0 and 6 = 20°,
respectively.
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Fig. 10. Similar to Fig. 9 but the tilt of the TI symmetry axis is § = 40°.

ACKNOWLEDGEMENTS

We would like to acknowledge the ROSE project for financial support.
We also acknowledge an anonymous reviewer for many valuable remarks.



P-WAVE DIFFRACTION AND REFLECTION TRAVELTIMES 421

0.04 0.25 o
=0 =0
0 03 | r=mnl6 _— 02 7:|1'm
’ y=mni3 P 4 y=mi3
et F 0.15 r=m2
® 0.02 R
. 0.1 /
001} —
oL oL
0 1 2 3 4 5 0 1 2 3 4 5
h/d h/d
(a) (b)
1
y=0 _—
0.8 AR ,
y=m3
06 y=mR
=
0.4
0.2
0 e A
0 1 2 3 4 5
h/d
(©)

Fig. 11. Similar to Fig. 9 but the tilt of the TI symmetry axis is § = 60°.
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APPENDIX A

THE RELATIONS OF SLOWNESS DERIVATIVES BETWEEN VTI AND
TTI MEDIA

In this appendix, we derive the relations of slowness derivatives between
VTI and TTI media. The perturbation of eq. (5) is written in the form,

Ap, cosp cosf  —sing cose sind | | Ap,
Ap, | = | sing cosf  cos¢  sing sinf || Ap,, , (A-1)

Aq —sinf 0 cosf Aq,
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From egs. (6) and (7), we obtain the perturbations of the vertical slowness q and
q,, respectively,

Aq = (99/9p,)Ap; + (39/3p,)Ap, , (A-2)
Aqv = (aqv/apvl)Apvl + (aq/aPVZ)APVZ . (A'3)

To represent the slowness derivatives dq,/dp,; and 0q/dp,, in a TTI
medium in terms of the slowness derivatives dq/dp, and dq/dp, in a VTI
medium, we consider two special cases. For the first case, we assume that the
perturbation of the slowness surface in a VTI medium is caused by change in
only p,; not p,,, that is

Ap, = 10 . (A-4)

From egs. (A-1)-(A-4), we derive a linear system of equations given by

1 0 —[cosgcosf + cosesind(0q,/dp,1)]| | Ap;
0 1 —[singcosf + singsinf(0q,/dp,;)] | | Ap, |= O . (A-5)
dq/dp, 9q/dp, [sind — cos6(dq,/dp,)] Ap,,

It follows that the expression for dq,/dp,, is given by
dq,/dp,; = —[(dq/dp;)cospcosd + (3q/dp,)singcosd + sinf]
/[(8q/0p,)cosesind + (dq/dp,)singsingd — cosf] . (A-6)

For the second case, we assume that the perturbation of the slowness
surface in a VTI medium is caused by change in only p,, not p,,, that is

Ap,, =0 . (A-7)

Similar manipulations are performed for eqs. (A-1)-(A-3) and (A-7),
resulting in another linear system of equations,

1 0 [sing — cosesind(dq,/dp,,)] | [ Ap,
0 1 —[cos¢ + singsind(dq,/dp,,)] | | Ap, | = 0. (A-8)
dq/dp,  9q/dp, — cos6(9q,/dp,,)] Apy;

By setting the determinant of coefficient matrix given in eq. (A-8) zero, we
derive the expression for dq,/dp,,,
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q,/dp,, = [(3q/dp,)sing — (dq/dp,)cos¢]
/[(3q/dp,)cosesing + (dq/dp,)singsingd — cosf] . (A-9)
Egs. (A-6) and (A-9) give the slowness derivative relations between VTI and
TTI media. Similar ideas are used by Stovas and Alkhalifah (2013) for mapping

of moveout functions in TI media and Hao et al. (2013) for deriving the
slowness derivative relations between VTI and HTI media.

APPENDIX B

ANALYTICAL APPROXIMATIONS FOR SLOWNESS IN VTI MEDIA
To derive the approximate solutions of eqgs. (19) and (20), we assume that

p; and @ can be approximately represented in forms of second-order
perturbation with respect to the anellipticity parameter 7,

P = 3, + a,(2n) + a,(2n)* (B-1)
q; = by + b;2n) + by(2n) . (B-2)

By substituting eq. (B-1) into equation (19), we determine coefficients a;,
i=0,1,2,

qQh = sz(z)/[vrzlmo(c2v% + Urzlmo)] > (B'3)
4 = —C4U8(C2U(2) + 4vﬁmo)/[vr21mo(czv% + vr21mo)3] s (B’4)
4, = (g + 5C7VpVime + 22050)/[Vino(C05 + Vano)] (B-5)

In a similar way, we obtain coefficients b, i = 0,1,2,

bO = vﬁmo/[v(z)(czv% + vﬁmo)] s (B'6)
by = 3 Vjvime/ (€05 + Vi) 5 (B-7)
b2 = 303(081)(2)031“10 - 5C6v?1mo)/(czv(2) + Uﬁmo)5 . (B'S)

Furthermore, Shanks transform (Bender and Orszag, 1978) is employed
to improve the accuracy of the perturbation solutions for p2 and g? and given in
egs. (B-1) and (B-2). The final expressions become
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p2 = P[ch§ + 4, + 6ctuivi(1—1) + 3ctvivi.(3+4n)]
H{Vime(€V5 + Vi) [4050 + cvi(1+21)
+ 2c¢tugui (B +5n) + ctudvi (9+44n)]} . (B-9)
4 = Vimolimo + cUg(1+4m) + 2¢2005n0(1+57)]

Kui(evg + Vo) [vame + ctig(1—=21) + 2¢%gupmo(1+5m)]} . (B-10)

APPENDIX C

THE EFFECTIVE MEDIUM PARAMETERS FOR A MULTI-LAYERED DTI
MODEL

In this appendix, we derive the effective medium parameters for a
multi-layered DTI model. We consider the 2D multi-layered DTI model with the
symmetry axis assigned in [x,z] plane.

Fig. C-1 shows the propagation of seismic ray in a multi-layered DTI
model. From the geometrical relations, we obtain the reflection traveltime T,
for the P-wave in the DTI model given by

S(m-h) _ p M(m) R(x+h)  p

Fig. C-1. Schematic plot of the P-wave reflection in a 2D multi-layered DTI model. In this model,
all layer interfaces are parallel to each other. The symmetry axis is normal to all layer interfaces.
Symbols M, S and R illustrate midpoint, source and receiver, respectively. m and h denote the
lateral position of the midpoint and source-receiver half-offset, respectively. d; denotes the thickness

of the i-th layer. p denotes the projection of the slowness on layer interfaces. 6 denotes the dip of
the symmetry axis.
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N
Tyy(h) = 2hpcost + 2 ), d,q(p) (C-1)
k=1
with N
hcosd + Y. d(3q/dp)(p) = O , (C-2)
k=1

where h denotes the source-receiver half-offset; d, denotes the thickness of the
k-th layer; N denotes the number of the layers in the DTI model; p denotes the
projection of the P-wave slowness on layer interfaces; q, denotes the k-th layer
slowness projection normal to layer interfaces, which is a function of slowness
projection p; 6 denotes the dip of the symmetry axis.

From egs. (C-1) and (C-2), we consider a corresponding multi-layered
VTI model (see Fig. C-2). We assume that both models have the same medium
parameters for each layer and the thickness d, of the k-th layer in the VTI
model is proportional to the thickness d, of the k-th layer in the DTI model,

d, = d,/cosf . (C-3)

S(m-h) p M(m) R(m+h) p
> L 4 >

N&t

QU
2..

Fig. C-2. Schematic plot of P-wave reflection in a 2D multi-layered VTI model. Symbols M, S and
R illustrate midpoint, source and receiver, respectively. m and h denote the lateral position of the
midpoint and source-receiver half-offset, respectively. d; denotes the thickness of the i-th layer. p
denotes the projection of the slowness on layer interfaces.
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In the multi-layered VTI model, the reflection traveltime for half-offset
h is represented by parametric equation,

N
T,q(h) = 2hp + 2 Y, dqp) (C-4)
k=1

where q, denotes the vertical projection of the P-wave slowness for the k-th
layer in the VTI model; the horizontal slowness component p satisfies

N
h + Y. d,(3q/3p)(p) = O . (C-5)

k=1

By comparing egs. (C-1) and (C-2) with egs. (C-4) and (C-5) and
considering relation (C-3), we obtain

Tyi(h) = T,(h)cosh . (C-6)

Eq. (C-6) indicates that the P-wave reflection traveltime for the
multi-layered DTI model can be obtained from the corresponding multi-layered
VTI model, which means that the existing traveltime approximations in VTI
media can apply for the multi-layered DTI model, e.g., the rational

approximation (Tsvankin, 1994) and generalized moveout approximation (Fomel
and Stovas, 2010).

For the P-wave reflection traveltime in the multi-layered VTI model, its
moveout expansion with respect to the half-offset h is given by (Ursin and
Stovas, 20006),

Thh) = 75 + [2h)*/vinel — 20/Tovim)(2h)* + O*) = 0 (€7

where two-way zero-offset traveltime 7,, NMO velocity v,,,, and anellipticity 7
are represented in terms of interval parameters,

N
7’0 = Z A?O,k N (C—S)
k=1

N
v121m0 = (1/%0) Z Ugmo,kA%O,k ’. (C-9)

k=1

N
N = (UB)1/(Fovino)] 1o VimoiATo,(1+8n) — (118) (C-10)

k=1
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with ~
A%O,k == 2dk/l}0’k . (C'll)

Here A7, denotes the two-way zero-offset traveltime for the k-th VTI layer;
Voxs Unmo.k» Mk are the on-symmetry axis velocity, NMO velocity and anellipticity
for the k-th VTI layer, respectively.

It is known that the moveout expansion for a single homogeneous VTI
layer can also be written in the form like eq. (C-7). If we treat this
multi-layered VTI model as an effective homogenous VTI medium, NMO
velocity v,,,, given in eq. (C-9) and anellipticity n given in eq. (C-10) can be
viewed as the corresponding effective parameters. From eqs. (C-8) and (C-11),
we can also obtain the on-symmetry-axis velocity v, for this effective VTI
medium,

N
Z (d/vop) (C-12)

an

From the reflection traveltime relation (C-6) and the moveout expansion (C-7)
for P-wave in the multi-layered VTI model, it follows that the moveout
expansion for the multi-layered DTI model is written as

T = 7 + [(2hcos6)*/v},,] — [29/(7vjmo)l(2heosd)* + O(h*) = 0 , (C-13)

where the expressions for the NMO velocity v,,,, and anellipticity n are the same
as the ones given in egs. (C-9) and (C-10); the zero-offset two-way traveltime
7, 1S given by

Ty = %OCOSG = Z ATO,k N (C_14)
k=1
with
ATO,k = 2dk/U0,k . (C-15)

Here A7, denotes the zero-offset two-way traveltime for the k-th layer in the
multi-layered DTI model.

If we view the product hcosf given in egs. (36) and (37) with y = ¢ as
a single parameter, it is easy to verify that the moveout expansion for P-wave
in a 2D homogeneous DTI model can also be written in the same form as the
moveout expansion (C-13) for the multi-layered DTI model. Therefore, from
these equivalent relations mentioned above, we conclude that the effective
medium parameters for the multi-layered DTI model are the same as the ones
for the multi-layered VTI model and can be represented in terms of the interval
parameters of the multi-layered DTI model,
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N N
v =2, d /Y, vy (C-16)
k=1 k=1
N
Voo = (1/70) ), VimoosATo » (C-17)
k=1
N
= (1/8)(1/Tovmg) X, VimosATo,(14+80) — (1/8) (C-18)
k=1

where the expression for A7, is given in eq. (C-14).





