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ABSTRACT
For pre-stack phase-shift migration in homogeneous isotropic media, the offset-
midpoint travel time is represented by the double-square-root equation. The travel
time as a function of offset and midpoint resembles the shape of Cheops’ pyramid.
This is also valid for transversely isotropic media with a vertical symmetry axis. In
this study, we extend the offset-midpoint travel-time pyramid to the case of 2D trans-
versely isotropic media with a tilted symmetry axis. The P-wave analytical travel-time
pyramid is derived under the assumption of weak anelliptical property of the tilted
transverse isotropy media. The travel-time equation for the dip-constrained trans-
versely isotropic model is obtained from the depth-domain travel-time pyramid. The
potential applications of the derived offset-midpoint travel-time equation include
pre-stack Kirchhoff migration, anisotropic parameter estimation, and travel-time cal-
culation in transversely isotropic media with a tilted symmetry axis.
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INTRODUCTION

Transverse isotropy with a tilted symmetry axis (TTI) is a
reasonable assumption to represent media with parallel tilted
bedding in seismic exploration. Developing analytical travel-
time formulations for pre-stack configuration for such me-
dia helps in many applications, including pre-stack Kirchhoff
migration and anisotropic parameter estimation, etc.

For pre-stack migration in a homogeneous isotropic
medium, the travel time as a function of offset and mid-
point is given by a simple double-square-root (DSR) equation
(Yilmaz 2001, pp. 628–639). Since the travel-time surface
on the offset-midpoint plane from a scattering point is like
a pyramid, Claerbout (1985, pp. 164–166) first named it as
Cheops’ pyramid. However, it is difficult to obtain such ana-
lytical travel-time formulations in anisotropic media since the
explicit relation between group velocity and ray angle does
not exist in anisotropic media. Even for transversely isotropic
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media with a vertical symmetry axis (VTI), the travel times are
often calculated numerically. Alkhalifah (2000b) derived the
offset-midpoint travel-time pyramid for VTI media through
the perturbation method.

In this paper, we extend the offset-midpoint travel-time
pyramid proposed by Alkhalifah (2000b) to the case of 2D
TTI media. The TI symmetry axis is assumed to be located
in the [x, z] plane. Under the assumption of the weak anel-
liptical property of TTI media, the horizontal slowness values
for source and receiver are expanded in terms of anelliptic-
ity η. The accuracy of these expansions is enhanced using
Shanks transformation (Bender and Orszag 1978, pp. 369–
375). The travel-time pyramids are obtained both in depth
and time domains. From the travel-time pyramid in the depth
domain, we derive the reflection travel time for P-wave in a
dip-constrained transversely isotropic (DTI) model. The det-
ailed description of the DTI model is shown in Alkhalifah and
Sava (2010, 2011).
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THE S TATION A R Y - PH A SE M E T H OD

The 2D pre-stack phase-shift wavefield extrapolation defined
in the offset-midpoint domain for a homogeneous isotropic
medium (Yilmaz 2001, pp. 628–639) can be extended to the
case of a homogeneous 2D general anisotropic medium,

P(x, h, z, t)=
∫

dωP(kx, kh, z=0, ω)
∫

dkh

∫
dkx exp(−iωϒ),

(1)

where x, h, z, and t denote midpoint, source–receiver
half-offset, depth, and time, respectively; kx and kh de-
note wavenumbers corresponding to x and h, respectively;
P(kx, kh, z = 0, ω) denotes the midpoint-offset seismic data in
the frequency–wavenumber domain at the surface (z = 0);
P(x, h, z, t) denotes the extrapolated seismic data in the time–
space domain; and ϒ denotes the travel-time shift given by

ϒ = −(qs + qg)z + 2pxx + 2phh − t. (2)

Here, px = kx/(2ω) and ph = kh/(2ω) are the horizontal
slowness values defined in the midpoint-offset space, and qs

and qg are the vertical slowness values defined at the source
and receiver positions, respectively.

To obtain the response of applying the pre-stack phase-
shift wavefield extrapolation (1) on a single trace, we adopt
the following definition (Alkhalifah 2000b),

P(x, h, z = 0, t) = P̃(x, h, z = 0, t)δ(x − x0, h − h0), (3)

where P̃(x, h, z = 0, t) denotes the time–space domain seis-
mic record at the surface; δ(., .) denotes Dirac delta function;
and midpoint x0 and half-offset h0 correspond to the spatial
position of the single trace.

By taking the Fourier transform (Yilmaz 2001, p. 156) of
equation (3) and substituting it into equation (1), we obtain
the single-trace response of the phase-shift migration operator
given by

P(x, h = 0, z, t=0)

=
∫

dω P̃(x0, h0, z=0, ω)
∫

dkh

∫
dkx exp(iωT), (4)

where T is the travel-time shift for single-trace migration,

T = (qs + qg)z − 2px(x − x0) + 2phh0. (5)

According to the relations between horizontal slowness
values for the source and receiver (Claerbout 1985, p. 181),

ps = px − ph, (6)

pg = px + ph, (7)

travel-time shift (5) is represented in terms of the slowness
values for the source and receiver,

T = (qs + qg)z + ps ys + pg yg, (8)

where qs and qg are vertical slowness values for the source
and receiver, respectively, and ys = x0 − h0 − x and yg =
x0 + h0 − x denote the lateral distances between the image
point and the source and receiver, respectively.

Equation (8) represents the total travel-time shift of plane
wave from the source located at (x0 − h0, 0) to the image point
located at (x, z) and back to the receiver located at (x0 + h0, 0).
Since the integrand given in equation (4) is an oscillatory func-
tion, the integral in kx and kh can be approximately calculated
by a stationary-phase method. The biggest contribution from
the integrand takes place when the oscillations are station-
ary and the phase function is either minimum or maximum
(Alkhalifah 2000b). The stationary point corresponds to the
extremum of equation (5). The travel time of seismic ray cor-
responds to the travel-time shift at the stationary point. From
equations (4)–(8), it follows that the stationary point is deter-
mined from the following equation:

dT
dp(s,g)

= 0, (9)

which is the mathematical representation of Fermat’s princi-
ple. By substituting travel-time shift (8) into equation (9), we
obtain

dq(s,g)

dp(s,g)
= − y(s,g)

z
, (10)

where p, q, and y are either ps , qs , and ys for the source or
pg, qg, and yg for the receiver, respectively. Equations (8) and
(10) correspond to the exact travel time of seismic ray from
the source to the image point then back to the receiver.

SLOWNESS APPROXIMATION AT
STATIONARY POINT

In this section, we derive the analytical approximation of
source and receiver slowness values at stationary point un-
der the assumption of weak anelliptical property of TTI me-
dia. Equations (8) and (9) depend on both horizontal and
vertical slowness projections. To obtain the slowness com-
ponents for the source and receiver, we consider the slow-
ness surface equation, which describes the relation between
horizontal p and vertical q slowness projections. In practice,
we can ignore the influence of SV-wave vertical velocity on
P-wave velocity and travel time in VTI media (Tsvankin and
Thomsen 1994; Alkhalifah 1998; Zhou and Greenhalgh
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2008). The 2D slowness surface for P-wave in VTI media
under acoustic approximation is given by Alkhalifah (1998,
2000a),

FVTI = −2ηυ2
0υ2

nmo p2
v q2

v + υ2
0 q2

v + (1+ 2η)υ2
nmo p2

v − 1 = 0, (11)

where pv and qv are horizontal and vertical slowness val-
ues in VTI media, respectively. υ0 and υnmo = υ0

√
1 + 2δ

are the vertical and normal moveout velocities, respectively.
η = (ε − δ)

/
(1 + 2δ) is the anellipticity parameter, and ε and δ

are Thomsen (1986) anisotropy parameters.
For the 2D TTI media, the TI symmetry axis is located

in the [x, z] plane. The corresponding slowness surface is
obtained by applying the following rotation operator,

p = pvcosθ + qvsinθ, (12)

q = −pvsinθ + qvcosθ, (13)

where p and q are the horizontal and vertical slowness values
for P-wave in TTI media, respectively, and θ is the tilt of the
TI symmetry axis measured from the vertical direction.

By substituting the expressions for p and q given in equa-
tions (12) and (13) into equation (10), we obtain the expres-
sion for dqv

/
dpv,

dqv

dpv

= − y cos θ − z sin θ

z cos θ + y sin θ
= −a, (14)

where a new parameter a is defined.
From equations (11) and (14), we obtain the equations

for pv and qv in a VTI medium, independently,

p2
v υ4

nmo − a2υ2
0

(−1+2p2
v υ2

nmoη
)3 (−1+ p2

v υ2
nmo(1+2η)

)=0, (15)

a2q2
v υ4

0 − (
1 − q2

v υ2
0

)
υ2

nmo

(
1 + 2η − 2q2

v υ2
0η

)3 = 0. (16)

Both equations (15) and (16) are quartic equations with
respect to variables p2

v and q2
v . Under the assumption of weak

anelliptical property of TTI media, the value of anellipticity η

is small. In this case, the solutions of equations (15) and (16)
can be approximately represented in forms of second-order
perturbation,

pv = pv0 + pv1(2η) + pv2(2η)2, (17)

qv = qv0 + qv1(2η) + qv2(2η)2. (18)

By substituting equation (17) into equation (15), we ob-
tain a polynomial equation in η. Since equation (17) is the
trial solution of equation (15), it follows that all coefficients

in this polynomial equation should be zero. Consequently, we
derive

pv0 = aυ0

υnmo

√
a2υ2

0 + υ2
nmo

, (19)

pv1 = − a3υ3
0

(
a2υ2

0 + 4υ2
nmo

)
2υnmo

(
a2υ2

0 + υ2
nmo

)5/2 , (20)

pv2 = 3υ5
0 (a9υ4

0 + 4a7υ2
0υ2

nmo + 24a5υ4
nmo)

8υnmo(a2υ2
0 + υ2

nmo)9/2
. (21)

In a similar way, we obtain the corresponding coefficients
qvi , i = 0, 1, 2,

qv0 = υnmo

υ0

√
a2υ2

0 + υ2
nmo

, (22)

qv1 = 3a4υ3
0υnmo

2
(
a2υ2

0 + υ2
nmo

)5/2 , (23)

qv2 = 3υ5
0υnmo

(−a8υ2
0 + 20a6υ2

nmo

)
8(a2υ2

0 + υ2
nmo)9/2

. (24)

Substitution of equations (17) and (18) into equation (12)
results in the analytical approximation of horizontal slowness
in a TTI medium,

p = p0 + p1(2η) + p2(2η)2, (25)

where coefficients pi , i = 0, 1, 2, are the linear combination
of pvi and qvi , given by

pi = pvi cosθ + qvi sinθ, i = 0, 1, 2. (26)

Here, the expressions for pvi and qvi , i = 0, 1, 2, are given
in equations (19)–(24). Shanks transformation (Bender and
Orszag 1978, pp. 369–375) is employed to improve the ac-
curacy of approximation (25). The final approximation for p

takes the form

p = p0 + 2p2
1η

p1 − 2p2η
. (27)

The horizontal slowness values at source and receiver
locations can be calculated using this equation. Note that
squaring equation (25) and setting the tilt to zero followed
by Shanks transformation results in the horizontal slowness
approximation for VTI media in Alkhalifah (2000b). The de-
tailed derivation is shown in Appendix A.

The vertical slowness for TTI media can also be ob-
tained in the similar way. However, a much more accurate
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Figure 1 Schematic plot of the midpoint-offset domain in a DTI
model. The TI symmetry axis is normal to the reflector. x0 denotes the
lateral position of source. h0 denotes half-offset. θ denotes the dip of
the reflector. d = τυ0/2 denotes the normal depth of the reflector un-
der common midpoint M, where τ denotes the two-way zero-offset
travel time at midpoint M, and υ0 denotes the symmetry-direction
P-wave velocity in the DTI model. The seismic ray propagates from
source S to point P and reflects back to receiver R. 
 denotes the
angle between incident (or reflected) ray and normal of the reflector.
For a specified offset, the angles of reflection and incidence are equal.

approximation of the vertical slowness in TTI media was de-
veloped by Stovas and Alkhalifah (2012),

q = q0(p) + 2q2
1 (p)η

q1(p) − 2q2(p)η
, (28)

where coefficients qi , i = 0, 1, 2, are the first- and second-
order perturbation coefficients (see Appendix B).

Equation (28) is used to calculate vertical slowness values
for the source and the receiver. The functional forms for q (p)
taken at source and receiver positions are different since the
slowness surface for a TTI medium is non-symmetric with re-
spect to the vertical axis (Golikov and Stovas 2012a, b; Stovas
and Alkhalifah 2012). For a given horizontal slowness value
p, we can compute two vertical slowness values q correspond-
ing to down-going and up-going waves from equation (28).
Down-going wave should be selected for ps , and up-going
wave should be for pg.

DEPTH- AND T I ME- DOMA I N T R A V EL-TIME
P Y R A M I D S

Substituting expressions for qs and qg given in equation (28)
into equation (8), we obtain the depth-domain offset-midpoint

travel-time pyramid for TTI media,

T(x, x0, h0, z) =
(

qs0 + 2q2
s1η

qs1 − 2qs2η
+ qg0 + 2q2

g1η

qg1 − 2qg2η

)
z

+ ps ys + pg yg, (29)

where the horizontal slowness values ps and pg can be eval-
uated through equation (27), and the coefficients for vertical
slowness qsi and qgi , i = 0, 1, 2, are derived by Stovas and
Alkhalifah (2012), as shown in Appendix B. The expressions
for ys and yg are shown after equation (8). Equation (29)
is also called as Cheops’ pyramid by referring to Claerbout
(1985, pp. 164–166) and Alkhalifah (2000b).

To obtain the time-domain travel-time pyramid, we con-
sider the case that half-offset is equal to zero (h0 = 0) and
lateral coordinate of image point is equal to lateral midpoint
coordinate (x = x0). From equation (29), it follows that the
zero-offset two-way travel time τ is given by

τ = T(x, x0 = x, h0 = 0, z) = 2qz0z, (30)

where

qz0 = 1
2

(
qs0 + 2q2

s1η

qs1 − 2qs2η
+ qg0 + 2q2

g1η

qg1 − 2qg2η

)∣∣∣∣∣
x=x0,h0=0

(31)

denotes the vertical slowness for the zero-offset seismic ray.
For a VTI medium, qz0 is reduced to 1/v0.

By substituting equation (30) into equation (29), we de-
rive the time-domain offset-midpoint travel-time pyramid for
P-wave in a TTI medium,

T(x, x0, h0, τ ) = 1
2qz0

(
qs0+ 2q2

s1η

qs1−2qs2η
+qg0+ 2q2

g1η

qg1−2qg2η

)
τ

+ ps ys + pg yg. (32)

TRAVEL-TIME CALCULATION FOR
REFLECTED P-WAVE IN A
DIP -CONSTRAINED TRANSVERSELY
ISOTROPIC M ODEL

The depth-domain offset-midpoint travel-time pyramid
equation derived above can be used to obtain the travel-time
equation for a 2D DTI model. A DTI model is a type of
transversely isotropic medium with symmetry axis perpen-
dicular to a dipping reflector (Alkhalifah and Sava 2010,
2011). Figure 1 shows a 2D DTI model with dip θ . From
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Figure 2 Travel time as a function of half offset h and midpoint x0 for an isotropic medium (a), a VTI medium (η = 0.2, δ = 0.1) (b), an elliptical
TTI medium (η = 0,δ = 0.1,θ = π

/
6) (c), and a TTI medium (η = 0.2,δ = 0.1,θ = π

/
6) (d). υ0 is 2km/s. The zero-offset two-way travel time

τ is 3s. All plots are shown under the same color scale.

the geometrical relations shown in Fig. 1, we derive the
coordinates of reflection point P,

x − x0 =
(
τ 2υ2

0 + 4h2
0 cos2 θ

)
sin θ

2τυ0
, (33)

z =
(
τ 2υ2

0 − 4h2
0 sin2 θ

)
cos θ

2τυ0
. (34)

From the depth-domain travel-time pyramid (29), it fol-
lows that the P-wave reflection travel time in a DTI model
is

T = τυ0

2

(
1 − 4h2

0

τ 2υ2
0

sin2 θ

)
cos θ

(
qs0qs1 + (q2

s1 − qs0qs2)η
qs1 − qs2η

+ qg0qg1 + (q2
g1 − qg0qg2)η

qg1 − qg2η

)
+ ps ys + pg yg, (35)

where the expressions for ps and pg are given in equation (27),
and ys and yg can be obtained by inserting equation (33) to

their expressions below equation (8). For the case of a DTI
model with the elliptical property (η = 0), equation (35) is
reduced to

T = τ

√
1 + 4h2 cos2 θ

τ 2v2
nmo

(36)

Further simplification to the isotropic case results in the
same equation but with υnmo = υ0.

NUMERICAL EXAMPLES

To check the shape of the travel-time pyramid as a function of
offset and midpoint, we compare the travel-time pyramid in a
TTI model with the ones from isotropic, VTI, and tilted ellipti-
cal isotropic (TEI) models. All four models have the same zero-
offset two-way travel time, i.e., τ = 3s. The P-wave velocity in
the isotropic model is 2.0km/s, which is also adopted as the
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Figure 3 Comparison of travel times extracted from travel-time pyramids for x0 = 0 (a), h0 = 0 (b), and x0 = h0 (c) in Fig. 2.

P-wave velocity along the symmetry axis for all anisotropic
models.

Figure 2 shows travel-time pyramids calculated from
equation (32) for isotropic, VTI, TEI, and TTI models. The
lateral location of the image point is taken as x = 0. Figure 3
shows the travel-time curves extracted from the travel-time
pyramids in Fig. 2 for x0 = 0, h0 = 0, and x0 = h0. From
Figs. 2 and 3, we can see that the travel-time pyramids for
isotropic and VTI models are symmetric with respect to both
midpoint and half offset. By contrast, the travel-time pyra-
mids for TEI and TTI models are non-symmetric with respect
to midpoint position. For both models, the peaks of travel-
time pyramids are shifted towards the dipping direction of
the TI symmetry axis. Compared with the travel-time pyra-
mid in the TEI model, this behavior is much more obvious
for the travel-time pyramid in the TTI model. This is because
the group velocity surface is not symmetric with respect to the
vertical axis, and the anisotropy parameters control the shape
of the travel-time surfaces.

Next, we employ the time-domain travel-time pyramid
(29) to investigate the variation of the common-offset migra-
tion isochrone versus the tilt of the TI symmetry axis. The

TTI model in the first example is adopted again. To obtain
the common-offset migration isochrone, we assume that both
half-offset h0 = 0.5km and two-way travel time t = 3s are un-
changed, representing a position in the data space. The spatial
positions of all image points are determined by solving equa-
tion (32). Figure 4 shows the influence of the tilt of the TI
symmetry axis on the migration isochrones. We can see that
the migration isochrone becomes much more non-symmetric
with respect to the vertical direction with increase in the tilt
of the TI symmetry axis. It means that the ignorance of tilt
may lead to significant error in TTI pre-stack migration.

In the third example, we apply travel-time equation (35)
to study the influence of dip angle in DTI model on the reflec-
tion P-wave travel time and test its accuracy. The zero-offset
two-way travel time is τ = 3s. From Fig. 5, we can see that the
travel time for a constant non-zero offset becomes small with
the increase in dip for the DTI model. Figure 6 shows the rela-
tive errors of travel-time approximation (35). The exact travel
time is calculated by two-point ray tracing method (see Ap-
pendix C). We can see that equation (35) is accurate enough
for practical application even for large values of dip angle
since the maximum relative error is no more than 0.08%.
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Figure 4 Migration isochrones in TTI media. The position of the
midpoint is fixed. The source–receiver offset and travel time are 1km
and 3s, respectively. The midpoint is located at x=0.

Figure 5 Travel-time curves as a function of the ratio of half-offset to
depth for various reflector dip angles in a DTI model (υ0 = 2km/s,
δ = 0.1, η = 0.2).

Figure 6 The relative error of expression (35) as a function of half-
offset-to-depth ratio for different dip angles. The parameters of DTI
model are the same as for Fig. 5.

D I S C U S S I O N S

The offset-midpoint travel-time pyramid (29) denotes the P-
wave diffraction travel time from a single scattering point in a
2D TTI medium. Diffraction travel time is used for diffraction-
based seismic imaging (e.g., Moser and Howard 2008;
Waheed et al. 2013) and local velocity analysis (e.g., Dell
et al. 2013). Investigating the sensitivity of travel time to model
parameter is an important step for travel-time-based seismic
inversion (Chapman and Miller 1996; Zhou and Greenhalgh
2008). Our first numerical example illustrates that the travel-
time pyramid can at least help realize this point for seismic
inversion based on diffraction travel time in TTI media.

The multiple-trace phase-shift migration corresponds to
the sum of equation (4) over midpoint x0 and offset h0. With
the aid of stationary-phase method, we can realize the offset-
midpoint domain pre-stack migration in a homogeneous 2D
TTI medium by equations (4) and (29). For vertically inhomo-
geneous 2D TTI media, the vertically inhomogeneous medium
can be assumed to be locally ‘homogeneous’ for each extrap-
olation step �z. In each extrapolation step �z, seismic migra-
tion is realized by equations (4) and (29).

CONCLUSIONS

The analytical offset-midpoint travel-time pyramid for P-wave
TTI media has been derived under the assumption of weak
anelliptical property of TTI media. The perturbation method
and Shanks transformation are utilized to obtain a relatively
simple analytical form for the horizontal and vertical slowness
values for the source and receiver. The depth-domain offset-
midpoint travel-time pyramid is employed to derive the travel
time of reflected P-wave in a DTI model. The potential appli-
cations of the derived offset-midpoint travel-time equations
are the pre-stack Kirchhoff migration in 2D TTI media, sensi-
tivity analysis of P-wave diffraction travel time to TTI model
parameters, and the forward modeling of P-wave reflection
travel time for the DTI model parameter inversion.
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APPENDIX A

Derivation of Alkhalifah’s approximation for squared
horizontal slowness in a transversely isotropic medium with
a vertical symmetry axis

In this appendix, we derive Alkhalifah’s (2000b) horizontal
slowness approximation from slowness perturbation (25) for
VTI media. Squaring equation (17) and keeping terms up to
the second order with respect to the anelliptic parameter η

leads to the approximation of horizontal slowness squared,

p2
v = p2

v0 + 2pv0 pv1(2η) + (p2
v1 + 2pv0 pv2)(2η)2. (A1)

Shanks transformation is applied to improve the accuracy
of equation (A-1). The final form is

p2
v = p2

v0 + 4p2
v0 p2

v1η

pv0 pv1 − (
p2

v1 + 2pv0 pv2

)
η

. (A2)

In case that tilt angle θ is equal to zero, equation (14)
becomes a = y

/
z. From the relation between depth z and

zero-offset two-way travel time τ , we derive the approxima-
tion for the horizontal slowness squared in a VTI medium
(Alkhalifah 2000b),

p2
v = y2

(
y6 + 6υ2

nmoy4(1 − η)τ 2 + 3υ4
nmoy2(3 + 4η)τ 4 + 4υ6

nmoτ
6
)

υ2
nmo

(
y2 + υ2

nmoτ
2
) (

y6(1 + 2η) + 2υ2
nmoy4(3 + 5η)τ 2 + υ4 y2(9 + 44η)τ 4 + 4υ6

nmoτ
6
) . (A3)

APPENDIX B

Slowness surface approximation for transversely isotropic
media with a tilted vertical symmetry axis

Stovas and Alkhalifah (2012) derived the vertical slow-
ness approximation (28) for TTI media by combining
the perturbation theory with respect to the anelliptic pa-
rameter η and Shanks transformation. The coefficient qj ,
j = 0, 1, 2, in equation (28) is the function of horizontal
slowness p,

q(±)
0 (p)=

p
(
υ2

nmo − υ2
0

)
sin θ cos θ ±

√
V2(θ ) − p2υ2

0υ2
nmo

V2(θ )
, (B1)

q(±)
1 (p) = ∓υ2

nmo

(
P (±)(p, θ )

)2
(
1 − υ2

0

(
Q(±)(p, θ )

)2
)

2
√

V2(θ ) − p2υ2
0υ2

nmo

, (B2)

q(±)
2 (p) = ∓q(±)

1

q(±)
1 V2(p, θ ) − 2υ2

nmoP (±)(p, θ )F (±)(p, θ )

2
√

V2(p, θ ) − p2υ2
0υ2

nmo

, (B3)

with

V2(θ ) = υ2
0 cos2 θ + υ2

nmo sin2 θ, (B4)

P (±)(p, θ ) = p cos θ − q(±)
0 sin2 θ, (B5)

Q(±)(p, θ ) = p sin θ + q(±)
0 cos θ, (B6)

F (±)(p, θ ) = sin θ + υ2
0 Q(±)(p, θ )P (±)(p, 2θ ), (B7)

where q(±)
j (p), j = 0, 1, 2 are the antisymmetric functions for

the upper (+) and lower (−) parts of the slowness surface;
V(θ ) is the elliptic velocity (Golikov and Stovas 2012a); θ

is the tilt angle of the symmetry axis; P (±)(p, θ ) is the rotated
horizontal slowness; Q(±)(p, θ ) is the rotated vertical slowness;
and F (±)(p, θ ) is the antisymmetric term. In particular, q(±)

0 (p)
defines the elliptical TTI slowness surface (Golikov and Stovas
2012a). Note the following symmetry relations: q(+)

j (−p) =
−q(−)

j (p), j = 0, 1, 2.

APPENDIX C

Two-point ray tracing for P-wave in a 2D homogeneous
dip-constrained transversely isotropic model

For the DTI (Alkhalifah and Sava 2010) model shown in
Fig. 1, the exact midpoint-offset travel time is written as

T = 2h0 cos θ

Vg(φ) sin φ
, (C1)

where h0 denotes source–receiver half-offset; Vg(φ) denotes
the group velocity for reflection angle φ; and θ denotes the
dip of this DTI layer.

From geometrical relations in Fig. 1, we derive the ex-
pression for sin φ given by

sin φ = 2h0 cos θ√
(2h0 cos θ )2 + (τυ0)2

, (C2)

where τ is the two-way zero-offset travel time, υ0 denotes the
P-wave velocity along the symmetry axis of TTI media.
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The projections of group velocity (Vgx, Vgz) in a 2D VTI
medium (Tsvankin 2001, p. 6) read

Vgx = υ sin θ + dυ

dθ
cos θ, (C3)

Vgz = υ cos θ − dυ

dθ
sin θ, (C4)

where θ denotes the phase angle of slowness measured from
the TI symmetry axis, and υ denotes the phase velocity. For
P-wave in an acoustic VTI medium, the expression for υ is
obtained from Alkhalifah (1998),

2υ2(θ ) = υ2
0 cos2 θ + (1 + 2η)υ2

n sin2 θ

+
√

(υ2
0 cos2θ + (1 + 2η)υ2

n sin2θ )2 − 2ηυ2
0υ2

n sin22θ,

(C5)

where υ0 denotes the velocity for P-wave along the VTI sym-
metry axis; υn denotes the normal moveout velocity for VTI
media; υn = υ0

√
1 + 2δ; and η is the anellipticity parameter

given by η = ε−δ

1+2δ
.

From equations (C-3) and (C-4), the magnitude of group
velocity Vg is obtained,

Vg =
√

υ2 +
(

dυ

dθ

)2

, (C6)

and the group angle φ can be expressed in terms of phase
velocity υ and phase angle θ ,

sin φ = υ sin θ + dυ

dθ
cos θ√

υ2 + (
dυ

dθ

)2
. (C7)

We rewrite equation (C-7) as

sin φ =
υζ + (1 − ζ 2) dυ

dζ√
υ2 + (1 − ζ 2)

(
dυ

dζ

)2
, (C8)

where ζ denotes sin θ for simplicity. The magnitude of group
velocity Vg, phase velocity υ, and its derivative can be written
in terms of ζ ,

Vg(ζ ) =
√

υ2 + (1 − ζ 2)
(

dυ

dζ

)2

, (C9)

2υ2(ζ ) = υ2
p0 + [

(1 + 2η)υ2
n − υ2

p0

]
ζ 2 +

√[[
(1 + 2η)υ2

n − υ2
p0

]2
+ 8ηυ2

nυ2
p0

]
ζ 4 + 2

[
(1 − 2η)υ2

n − υ2
p0

]
υ2

p0ζ
2 + υ4

p0, (C10)

dυ(ζ )
dζ

= 1
2υ(ζ )

[
(1 + 2η)υ2

n − υ2
p0

]
ζ +

[[
(1 + 2η)υ2

n − υ2
p0

]2
+ 8ηυ2

nυ2
p0

]
ζ 3 +

[
(1 − 2η)υ2

n − υ2
p0

]
υ2

p0ζ

2υ(ζ )

√[[
(1 + 2η)υ2

n − υ2
p0

]2
+ 8ηυ2

nυ2
p0

]
ζ 4 + 2

[
(1 − 2η)υ2

n − υ2
p0

]
υ2

p0ζ
2 + υ4

p0

. (C11)

Since sin φ and ζ given in equation (C-8) are the limited
quantities varying from 0 to 1, the value of ζ can be inverted
stably from equations (C-2) and (C-8)–(C-11) by a numerical
method, e.g., steepest descent approach. It follows that the
reflection travel time is calculated from equations (C-1) and
(C-9)–(C-11).
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