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ABSTRACT
We present an overall description of moveout formulas of P–SV converted waves
in vertically inhomogeneous transversely isotropic media with a vertical symmetry
axis by using the generalized moveout approximation. The term “generalized” means
that this approximation can be reduced to some existing approximations by spe-
cific selections of parameters, which provides flexibility in application depending on
objectives. The generalized moveout approximation is separately expressed in the
phase and group domains. All five parameters of the group domain (or phase do-
main) generalized moveout approximation are determined using the zero offset (or
horizontal slowness) ray and an additional nonzero offset (or horizontal slowness)
ray. We discuss the selection of parameters to link the generalized moveout approx-
imation to some existing approximations. The approximations presented are tested
on homogeneous, factorized, and layered transversely isotropic models. The results
illustrate that utilizing an additional reference ray significantly improves the accuracy
of phase-domain and group-domain moveout approximations for a large range of
horizontal slownesses and source–receiver offsets.
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INTRODUCTIO N

The anisotropic aspect of seismic modelling and processing is
now widely taken into account in applied seismology. Trans-
verse isotropy is often observed in sedimentary rocks at long
seismic wavelengths. Thomsen’s (1986) notation is helpful to
characterize transversely isotropic media with a vertical sym-
metry axis (VTI).

The interest in inverting for the vertical velocity of SV-
waves and Thomsen parameters from surface seismic data
in VTI media increases with the development of multi-
component seismic processing and imaging in shale reservoirs
(e.g., Thomsen 1999; Grechka et al. 2002; Cai and Tsvankin
2013). If we use only P-wave surface data, however, it is
known that the SV-wave velocity cannot be estimated be-
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cause the P-wave anisotropic velocity is insensitive to the ver-
tical velocity of SV-waves (e.g., Alkhalifah 1997; Tsvankin
and Thomsen 1994). In P-wave velocity analysis, only two-
way zero-offset travel time, normal moveout (NMO) velocity,
and the anellipticity parameter can be estimated. Compared
with P-wave data, converted wave data carry more infor-
mation. The P–SV converted wave is often observed in sur-
face multi-component data from VTI media, where the term
“P–SV” implies a particular conversion: a downward-
propagating P-wave, converting on reflection at its deepest
point of penetration to an upward-propagating SV-wave (e.g.,
Stewart et al. 2002; Thomsen 1999).

Theoretically, vertical velocities of P- and SV-waves and
Thomsen’s parameters (including ε and δ) can be inverted by
combining the velocity analysis of P-waves and P–SV-waves
and the generalized Dix formulas (Ursin and Stovas 2005;
Haugen, Ursin, and Tovas 2007). The velocity analysis based
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on moveout approximations of P–SV-waves can help pro-
vide an NMO velocity model, for the next step of process-
ing seismic data, such as Dix inversion, NMO correction,
and Kirchhoff time migration. The velocity analysis of reflec-
tion data is performed in the travel-time–offset (t-x) domain
(we call it the group domain for simplicity) (e.g., Alkhalifah
and Tsvankin 1995; Alkhalifah 1997; Stewart et al. 2002;
Thomsen 1999; Alkhalifah 2011; Waheed et al. 2013) or
in the travel-time intercept-horizontal slowness (τ -p) domain
(we call it the phase domain for simplicity) (e.g., van der
Bann and Kendall 2002, 2003; Diebold and Stoffa 1981;
Masoomzadeh et al. 2012; Sen and Mukherjee 2003). Despite
the limitation of the velocity analysis based on the horizontal
layering assumption, the interval parameters estimated from
P- and P–SV-wave moveout by means of the Dix equation
(Ursin and Stovas 2005) may be implemented as initial mod-
els for velocity-independent layer stripping (Dewangan and
Tsvankin 2006; Tsvankin 2001; Wang and Tsvankin 2009)
and reflection tomography (Foss, Ursin, and de Hoop 2005;
Wang and Tsvankin 2013).

Analytic moveout formulas play a prominent role in ve-
locity analysis. For flat-lying VTI layers, the P–SV-wave travel
time of P–SV converted waves is an even function of the
source–receiver offset in the group domain or of the horizontal
slowness in the phase domain. Since the P–SV-wave moveout
of P–SV converted waves is inherently non-hyperbolic even for
a horizontal isotropic layer, non-hyperbolic moveout approx-
imations are desirable for P–SV-wave velocity analysis. For
P–SV-waves in the group domain (t-x), the rational approx-
imation (e.g., Tsvankin and Thomsen 1994; Thomsen 1999;
Li and Yuan 2003) matches the four-order moveout expan-
sions at zero offset, and the asymptotic moveout expansions at
the infinite source–receiver offset. To enhance the accuracy of
rational approximation around the zero-offset ray, the sixth-
order term of the P–SV-wave moveout expansion can also
be introduced (Ursin and Stovas 2006). The corresponding
phase-domain mirror approximation can be obtained from
the group-domain approximation. An example of the phase-
domain moveout approximation for P-waves in VTI media is
shown in Stovas and Fomel (2012a, b).

For many P-wave moveout approximations, some au-
thors (Zhang and Uren 2001; van der Baan and Kendall 2002;
Stovas and Ursin 2004; Douma and Calvert 2006) noted the
limited accuracy at large offsets. It is possible that the moveout
approximations mentioned earlier become inaccurate at large
offsets (horizontal slowness). To overcome this disadvantage,
in addition to the zero-offset ray, three reference rays with
finite offsets are introduced by Douma and Calvert (2006)

to form the [2/2] Pade approximation for P-wave moveout
in VTI media. Their approximation illustrates the improve-
ment of accuracy within the range between selected rays. As
an alternative, the generalized moveout approximation is pro-
posed by Fomel and Stovas (2010), Stovas (2010a), and Stovas
and Fomel (2012a). The term “generalized” means that their
approximation may be reduced to many existing approxima-
tions under some particular assumptions for the selection of
parameters. The generalized approximation provides a possi-
bility for an overall description of moveout approximations.
The generalized moveout approximation in the group domain
includes five independent parameters, three of which are de-
termined from the moveout expansion at the zero-offset ray
and others of which are obtained from the travel time and its
first-order derivative for a selected non-zero source–receiver
offset reference ray. It is reasonably believed that the accu-
racy of the moveout approximation can be improved within
the offset range between the zero-offset ray and the selected
finite-offset ray. For the generalized moveout approximation
in the phase-domain, all five independent parameters can be
specified by a similar procedure.

In this study, we revisit the generalized moveout approxi-
mation and apply it to P–SV-waves in VTI media. Under some
particular parameter selections, some simple approximations
are linked to the generalized moveout approximation. The
paper is organized as follows. We start with the generalized
moveout approximations for P–SV-waves in the group and
phase domains. In the following section, we introduce several
other approximations as special cases of the generalized
moveout approximation in the group and phase domains.
Then, we discuss the estimation of all five parameters in
the generalized moveout approximations for homogeneous
VTI media, factorized VTI media, and multi-layered VTI
media. In the discussion, we explain the application of the
generalized moveout approximation in practice.

GENERALIZED MOVEOUT
APPROXIMATION

Group-domain generalized moveout approximation

The generalized non-hyperbolic moveout approximation in
the group domain is represented in the following form (Fomel
and Stovas 2010):
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υ2
n

+ Ax4

υ4
n

(
t2
0 + B1

x2

υ2
n

+
√

t4
0 + 2B1t2

0
x2

υ2
n

+ C1
x4

υ4
n

) ,

(1)
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Generalized moveout approximation 1471

where t denotes the two-way travel time; x denotes the source–
receiver offset; t0 denotes the zero-offset two-way travel time;
parameters υn and Adenote the NMO velocity and the quartic
moveout coefficient, respectively; parameters t0, υn, and A are
obtained from the following Taylor series:

t2(x) = t2
0 + x2

υ2
n

+ Ax4

2t2
0 υ4

n

+ · · · (2)

and additional parameters B1 and C1 are computed from a
non-zero offset reference ray with travel time t(X) = T and
horizontal slowness (dt/dx)(X) = P, i.e.,

B1 = t2
0 (X − PTυ2

n )
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− AX2
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n (t2
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For the reference ray with an infinite offset, parameters
B1 and C1 can be determined from the asymptotic expansion
of travel time squared, i.e.,

B1 = t2
0 (1 − υ2

n P2
∞)

t2
0 − T2∞

− A
1 − υ2

n P2∞
, (5)

C1 = t4
0 (1 − υ2

n P2
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(t2
0 − T2∞)2 , (6)

where T∞ and P∞ are the travel-time intercept and the hori-
zontal slowness from the asymptotic expansion of travel time
squared at infinite offset, i.e.,

t2(x) ≈ T2
∞ + P2

∞x2. (7)

Phase-domain generalized moveout approximation

The phase-domain travel-time intercept τ is related to the
group-domain travel time t via τ–p transform, i.e.,

τ (p) = t(p) − px(p), (8)

where the travel-time intercept τ is a function of the horizontal
slowness p, and x and t denote the source–receiver offset and
travel time in the group domain, respectively.

The generalized non-elliptic moveout approximation in
the phase domain is represented in the form similar to the one
defined in the group domain (Stovas and Fomel 2012a), i.e.,

τ 2(p)

= τ 2
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n

1 − B2 p2υ2
n +√

1 − 2B2 p2υ2
n + C2 p4υ4

n

)
,

(9)

where τ0 is the two-way zero-horizontal-slowness travel time
equal to t0 given in equation (1), parameters υn and A are
described after equation (1), and parameters B2 and C2 con-
trol the accuracy of the moveout approximation (9) at large
horizontal slowness.

Expanding equation (9) into a series with respect to hor-
izontal slowness p results in the following:

τ 2(p) = τ 2
0

(
1 − p2υ2

n + A
2

p4υ4
n + · · ·

)
. (10)

As an alternative approach, parameters υn and A can
be specified by matching the Taylor expansion (10) and the
corresponding expansion of phase-domain exact travel time
squared at the zero horizontal slowness p = 0.

To determine parameters B2 and C2 given in equation (9),
we select a reference ray with a non-zero-valued horizontal
slowness P ≤ pmax, where pmax denotes the maximum hori-
zontal slowness. We define the travel-time intercept τ̂ = τ (P)
and its first-order derivative τ̂ ′ = τ ′(P) for the selected refer-
ence ray. From these operations, it follows that parameters B2

and C2 are obtained, i.e.,
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We next consider two special cases. For the first case, we
assume τ̂ = limp→P τ ′(p) = ∞ and τ̂ ′ = τ (P) 	= 0. It follows
that the expressions for B2 and C2 are reduced to
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For the second case, it is assumed that τ̂ ′ =
limp→P τ ′(p) = ∞ and τ̂ = τ (P) = 0. From the limit σ =
limp→P [τ ′(p)τ (p)], it follows that equations (13) and (14)
become

B2 = Pυ2
nτ 2

0 + σ

Pυ2
n (τ 2

0 + Pσ )
+ Aτ 2

0 P2υ2
n

τ 2
0 (1 − P2υ2

n )
, (15)

C2 = (Pυ2
nτ 2

0 + σ )2

P2υ4
n (τ 2

0 + Pσ )2 + 2Aτ 2
0

τ 2
0 (1 − P2υ2

n )
. (16)

C© 2015 European Association of Geoscientists & Engineers, Geophysical Prospecting, 64, 1469–1482



1472 Q. Hao and A. Stovas

OTHER M OVEOUT APPROXIMATIONS

Fourth-order Taylor approximation

By setting B = C = 0, the generalized moveout approxima-
tion (1) is reduced to the fourth-order Taylor approximation
in the group domain, i.e.,

t2(x) = t2
0 + x2

υ2
n

+ Ax4

2t2
0 υ4

n

. (17)

Similarly, the generalized moveout approximation (9) be-
comes the fourth-order Taylor approximation in the phase
domain, i.e.,

τ 2(p) = τ 2
0

(
1 − p2υ2

n + A
2

p4υ4
n

)
. (18)

Shifted hyperbola and ellipse approximations

The selection of parameters A = (1 − s)/2, B = A+ 1/2, and
C = 0 reduces the generalized moveout approximations (1)
and (9) to the shifted hyperbola and ellipse approximations in
the group and phase domains. The shifted hyperbola approx-
imation is given by

t(x) = t0

(
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s

)
+ 1
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√
t2
0 + s
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υ2
n
. (19)

The corresponding shifted ellipse approximation in the
phase domain is the mirror of the shifted hyperbola approxi-
mation (Stovas and Fomel 2012b), i.e.,

τ (p) = τ0

[(
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s

)
+ 1

s

√
1 − s p2υ2

n

]
. (20)

The heterogeneity coefficient s controls the deviation of
equation (19) from the hyperbola and the deviation of equa-
tion (20) from the ellipse (Stovas and Fomel 2012b).

Rational approximations

By setting C1 = B2
1 ≡ D, the generalized moveout approxima-

tion (1) is reduced to the rational moveout approximation in
the group domain:
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0 + x2
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n
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n
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t2
0 υ2

n

) . (21)

Similarly, the corresponding rational approximation in
the phase domain is obtained by setting C2 = B2

2 ≡ D in gen-
eralized moveout approximation (9), i.e.,

τ 2(p) = τ 2
0

(
1 − p2υ2

n + Ap4υ4
n

2(1 − Dp2υ2
n )

)
. (22)

Thomsen (1999) suggested determining the parameter D

by matching the asymptotic expansions of the exact travel time
squared and the moveout approximation (21) at the infinite
offset. Thus, parameter D is given by

D = Aυ2
pn(1 + 2η)

2(υ2
n − υ2

pn(1 + 2η))
, (23)

where υpn and η represent the P-wave NMO velocity and
the anellipticity parameter (Alkhalifah and Tsvankin 1995),
which can be obtained from the Taylor expansion of P-wave
travel time squared at the zero-offset ray.

Ursin and Stovas (2006) proposed an alternative way to
determine parameter D by matching the Taylor expansion of
rational approximation (21) and the exact travel time squared
at the zero-offset ray up to the sixth order, i.e.,

D = − E
3A

, (24)

where parameter E is related to the sixth-order moveout
coefficient. For a homogeneous vertical transverse isotropy
(VTI) medium, parameter E is given by equation (D-27) of
Appendix D. For a factorized VTI medium (e.g., Alkhalifah
1995; Stovas 2010b), see equation (D-23) with equations (D-
15)–(D-18) in Appendix D. For a multi-layered VTI model,
see equation (E-13) in Appendix E.

N U M E R I C A L T E S T S

In this section, we apply the generalized moveout approxi-
mation to specific models including a homogeneous vertical
transverse isotropy (VTI) model, a factorized VTI model, and
a multi-layered VTI model. To quantitatively compare the
accuracy of the approximations, we slightly modify the two-
point P-wave ray tracing algorithm (Tian and Chen 2005;
Fowler et al. 2008) to calculate the exact P–SV-wave travel
time in the group domain. The exact P–SV-wave travel time in
the phase domain can be calculated by using the vertical slow-
ness formulas of P- and SV-waves (van der Baan and Kendall
2003). The following notation is used to describe VTI media:
α0 denotes P-wave vertical velocity; r0 denotes the ratio be-
tween the vertical S-wave to P-wave velocities; and a0 = 2δ

and b0 = 2(ε − δ)/r2
0 denote the P-wave and SV-wave NMO

factors, respectively, where ε and δ are Thomsen (1986) pa-
rameters.

A homogeneous VTI model

For a horizontal reflector in a homogeneous VTI medium, we
derive the analytical expressions for all parameters given in
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the group- and phase-domain generalized moveout approxi-
mations (1) and (9). By expanding the exact P–SV-wave travel
time (see Appendix A) squared at zero offset, we determine
the zero-offset two-way travel time t0, NMO velocity υn, and
coefficient A (see Appendix D), i.e.,

t0 = tp0 + ts0 = tp0

(
1 + 1

r0

)
, (25)

υ2
n = α2

0
r0(1 + a0 + (1 + b0)r0)

1 + r0
, (26)

A = − (1 + a0 + (−1 + b0)r2
0 )2

2r0(1 + a0 + (1 + b0)r0)2 . (27)

Here, tp0 and ts0 given in equation (25) denote P- and
SV-wave one-way zero-offset travel times.

To obtain the analytical expression for parameters B1

and C1 given in group-domain generalized moveout approxi-
mation (1) and parameters B2 and C2 given in phase-domain
generalized moveout approximation (9), we consider the limit
case that the incident branch of the selected reference ray be-
comes horizontal.

For the group-domain generalized moveout approxima-
tion, this limit case indicates that the source–receiver off-
set of the reference ray is infinite. From equations (3) and
(4), it follows that parameters B1 and C1 are given by (see
Appendix B)

B1 = (1 + r0)
(
1 + a0 + (−1 + b0) r0

2
)2 (

1 + a0 + b0r0
2
)

2r0(1 + a0 + (1 + b0) r0)2 (1 + a0 + (−1 + b0r0) r2
0

) ,
(28)

C1 = 0. (29)

For the phase-domain generalized moveout approxima-
tion, this limit case indicates that the horizontal slowness
of the reference ray become the maximum horizontal slow-
ness for the incident P-wave. From equations (13) and (14),
it follows that parameters B2 and C2 are given by (see
Appendix C)

B2 = (1 + r0)(1 + a0 + (1 + b0)r2
0 )

2r0(1 + a0 + (1 + b0)r0)
, (30)

C2 = (1 + r0)2(1 + a0 + b0r2
0 )

(1 + a0 + (1 + b0)r0)2 . (31)

We design a homogeneous VTI model to test the gen-
eralized moveout approximations in the group and phase

Figure 1 Relative error of the P–SV-wave moveout approximations
in the (a) group domain and the (b) phase domain for a homogeneous
VTI layer. The plot (a) compares the relative error of fourth-order
Taylor approximation (17) (red dashed line), shifted-hyperbola ap-
proximation (19) (red line), rational approximation (21) with equa-
tion (23) (black line), rational approximation (21) with equation (24)
(black dashed line), the generalized moveout approximation (1) with
the horizontal reference ray (blue dashed line), and the generalized
moveout approximation (1) with a finite-offset (6km) reference ray
(blue line), respectively. The lateral coordinate x/z denotes the ratio
of source–receiver offset to reflector depth. The plot (b) illustrates the
relative error of the phase-domain generalized moveout approxima-
tion (9) with the horizontal reference ray. ph denotes the maximum
horizontal slowness of P-waves in this model.

domains. The model parameters are P-wave vertical veloc-
ity α0 = 3km/s, the ratio between the vertical velocities of
SV- and P-waves r0 = 0.5, Thomsen parameters ε = 0.1 and
δ = −0.1, and the reflector depth z = 1km. The plot (a) in
Fig. 1 compares the group-domain generalized moveout ap-
proximation with other approximations. This plot shows that
the generalized moveout approximation with the horizontal
reference ray can produce a satisfactory result, although it has
relatively low accuracy at large offset compared with the ra-
tional approximation (21) with equation (24); for a selection
of the large-offset reference ray, the accuracy of the general-
ized moveout approximation can be significantly improved.

C© 2015 European Association of Geoscientists & Engineers, Geophysical Prospecting, 64, 1469–1482



1474 Q. Hao and A. Stovas

The plot in (b) Fig. 1 shows the relative error of the phase-
domain generalized moveout approximation. The relative er-
ror in travel time is small enough, which seems that the phase-
domain generalized moveout approximation is equivalent to
the exact solution.

A horizontal reflector in a factorized VTI medium

For a horizontal reflector in a factorized VTI medium, P- and
SV-wave vertical velocities are linear functions of depth z. It
is assumed that the ratio between P- and SV-wave vertical
velocities keeps a constant for simplicity. Hence, the vertical
velocities for P- and SV-waves are represented by

α(z) = α0

(
1 + γ − 1

H
z
)

, (32)

β(z) = r0α0

(
1 + γ − 1

H
z
)

, (33)

where α(z) and β(z) denote P- and SV-waves vertical velocities
at the depth z, respectively; α0 denote P-wave vertically veloc-
ity at surface; H is the thickness of this factorized VTI layer;
and γ = α(H)/α0 is the ratio between the vertical velocity of
P-wave to the bottom and the vertical velocity to the top of
the layer.

For P–SV-waves in the factorized VTI layer, we finally
derive the zero-offset two-way travel time t0, NMO velocity
υn, and coefficient A as follows (see Appendix D):

t0 = H(1 + r0) ln γ

r0α0(γ − 1)
, (34)

υ2
n = α2

0
r0(1 + a0 + (1 + b0)r0)(γ 2 − 1)

2(1 + r0) ln γ
, (35)

A = 1
2

− ((1 + a0)2(1 + r0) + 4(1 + a0)b0r2
0 + (1 + b0)2r3

0 + (−1 + b0)2r4
0 )(1 + γ 2) ln γ

2r0(1 + a0 + (1 + b0)r0)2(γ 2 − 1)
. (36)

By setting γ = 1, we obtain equations (25)–(27). By set-
ting a0 = b0 = 0, we obtain equations for the linear velocity
model (Stovas 2010b).

Parameters B1 and C1 given in the group-domain ap-
proximation (1) can be determined by substituting the offset
X(P) and travel time T(P) for the maximum-offset reference
ray with the horizontal slowness P = 1/(α0γ ) into equations

(3) and (4), where the travel time T(P) and the offset X(P)
are calculated by the parametric equations (D-3) and (D-5)
in Appendix D. On the other hand, parameters B2 and C2

given in the phase-domain generalized moveout approxima-
tion (9) can be calculated by substituting travel-time intercept
τ̂ = τ (P) and its derivative τ̂ ′ = τ ′(P) for the maximum-offset
reference ray with the horizontal slowness P = 1/(α0γ ) into
equations (11) and (12), where τ̂ is obtained from τ–p trans-
form (8) and τ̂ ′ is obtained by differentiating τ (P) with respect
to horizontal slowness P at P = 1/(α0γ ).

We use a factorized VTI model to compare the gener-
alized moveout approximations in the group and phase do-
mains with other approximations. The medium parameters
are α0 = 3km/s, r0 = 0.5, γ = 1.5, ε = 0.1, and δ = −0.1.
The thickness of this horizontal layer is 1 km. Figure 2 shows
the relative error of the generalized moveout approximations
and other approximations. The plot (a) in Fig. 2 illustrates that
the group-domain generalized moveout approximation is al-
most close to the exact solution, and its maximum relative er-
ror is less than 0.02%. The reflected P–SV-wave with the max-
imum offset is taken as the non-zero offset reference ray for the
group generalized moveout approximation. This corresponds
to selecting the maximum horizontal slowness of reflected P–
SV-waves for the phase-domain generalized moveout approx-
imation. The plot (b) in Fig. 2 shows that the phase-domain
generalized moveout approximation also produces a relatively
accurate result compared with other approximations, espe-
cially at very large horizontal slowness. Except the generalized
moveout approximation, we note that the accuracy of other
phase-domain approximations decreases rapidly when the
horizontal slowness of P–SV-waves approaches its maximum
value.

Multi-layered VTI model

For P–SV-waves in a multi-layered VTI model, the move-
out expansion at the zero-offset ray is given as follows (see
Appendix E):

t0 = d0, (37)
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Figure 2 Relative error of the P–SV moveout approximations for
the (a) group domain and the (b) phase domain in a factorized VTI
model. The plot (a) compares the relative error of fourth-order Taylor
approximation (17) (red line), shifted-hyperbola approximation (19)
(red dashed line), rational approximation (21) with equation (23)
(black line), rational approximation (21) with equation (24) (black
dashed line), and the generalized moveout approximation (1) with the
maximum offset reference ray (blue line) versus the offset–depth ratio
x/z. The plot (b) illustrates the relative error of the phase-domain ap-
proximations versus the normalized horizontal slowness p/ph, which
includes fourth-order Taylor approximation (18) (red line), shifted-
hyperbola approximation (20) (red dashed line), rational approxima-
tion (22) with equation (23) (black line), rational approximation (22)
with equation (24) (black dashed line), and the generalized move-
out approximation (1) with the normalized horizontal slowness of
the reference ray (blue line) equal to 0.99. ph denotes the maximum
horizontal slowness of P-waves in this model.

υn =
√

−2d2

d0
, (38)

A = 1
2

+ d0d4

d2
2

. (39)

Here, di , i = 0, 2, 4, are calculated from equations (E-4)–
(E-7) in Appendix E.

For the group-domain generalized moveout approxima-
tion (1), a finite-offset reference ray is selected to deter-
mine parameters B1 and C1 from equations (3) and (4).

Table 1 Parameters for a six-layer VTI model. �z denotes the layer
thickness; α0 and β0 are the vertical velocities of P- and SV-waves,
respectively; and ε and δ are Thomsen (1986) parameters. The values
of these parameters are taken from Ursin and Stovas (2006)

Layer �z (km) α0(km/s) β0(km/s) ε δ

1 0.25 1.74 0.39 0.08 0.05
2 0.15 1.85 0.62 0.14 0.10
3 0.10 1.94 0.78 0.10 0.03
4 0.16 2.14 0.86 0.14 −0.02
5 0.14 2.22 0.89 0.10 −0.05
6 0.20 2.00 1.00 0.14 0.10

For the phase-domain generalized moveout approximation,
parameters B2 and C2 are determined from equations (11)
and (12).

A six-layer VTI model is designed to calculate the error
of the generalized moveout approximation and other existing
approximations in the group and phase domains. The model
parameters are listed in Table 1. Figure 3 shows compar-
isons of the generalized moveout approximation with other
approximations for this model. The plot in Fig. 3 shows that
the group-domain generalized moveout approximation may
provide a satisfactory accuracy for multi-layered media by
using the large-offset reference ray. For the phase-domain
generalized moveout approximation in the right plot of
Fig. 3, we select the reference ray with the normalized hor-
izontal slowness equal to 0.99. This means that the selected
ray is very close to the horizontal ray. Similar to the previous
example of a factorized VTI medium, the phase-domain gen-
eralized moveout approximation produces accurate results by
comparing with other approximations.

D I S C U S S I O N

To apply the group-domain generalized moveout approxima-
tion in velocity analysis, we select a reference ray correspond-
ing to a large source–receiver offset along a specific seismic
event in a common midpoint (CMP) gather. This may be ac-
complished when the signal-to-noise ratio of seismic data is
high. The local slope of the travel-time–offset curve for the se-
lected ray may be automatically estimated for example using
the plane-wave deconstruction approach (e.g., Fomel 2002;
Schleicher et al. 2009). In the generalized moveout approxi-
mation (1) with equations (3) and (4), only zero-offset travel
time, NMO velocity, and the quartic moveout coefficients re-
main unknown. The three quantities can be estimated by the
double semblance scanning (e.g., Li and Yuan 2003). From
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Figure 3 Relative error of the P–SV-wave moveout approximations
for the (a) group domain and the (b) phase-domain in a six-layer VTI
model. Model parameters are listed in Table 1. The plot (a) shows the
relative error of fourth-order Taylor approximation (17) (red line),
shifted-hyperbola approximation (19) (red dashed line), rational ap-
proximation (21) with equation (23) (black line), rational approxima-
tion (21) with equation (24) (black dashed line), and the generalized
moveout approximation (1) with a finite-offset (6 km) reference ray
(blue line) versus the offset–depth ratio x/z. The plot (b) illustrates the
relative error of the phase-domain approximations versus the normal-
ized horizontal slowness p/ph, which includes fourth-order Taylor
approximation (18) (red line), shifted-hyperbola approximation (20)
(red dashed line), rational approximation (22) with equation (23)
(black line), rational approximation (22) with equation (24) (black
dashed line), and the generalized moveout approximation (1) with
the maximum horizontal slowness reference ray (blue line). In the
plot (b), ph denotes the maximum horizontal slowness of P-waves in
this model.

the accuracy analysis in the section of “Numerical examples,”
it is reasonable to believe that the estimated NMO veloc-
ity and the quartic moveout coefficients are accurate enough
for the normal moveout correction in horizontally vertical
transverse isotropy (VTI) layers. When using the generalized
moveout approximation to do the NMO correction of the
CMP data, the effect of stretching of data may be reduced
since a long-offset reference ray is involved to constrain the

generalized moveout approximation. A similar phenomenon
is noted by Douma and Calvert (2006), who used four pairs
of travel time and offset of rays to build an accurate rational
moveout approximation and found that their approximation
can reduce the stretching of long offset data during NMO
correction. In practice, it is obvious that the accuracy of the
generalized moveout approximation is limited by the accu-
racy of the travel time and the slope of the selected reference
ray. When the quality of the CMP data is too low to select
the long-offset ray, the selection of a nonzero-offset reference
ray does not help moveout approximation very much. For
this case, therefore, the generalized moveout approximation
needs to be replaced by relatively simple moveout approx-
imations (e.g., rational approximation or shifted hyperbola
approximation) in velocity analysis.

The phase-domain velocity analysis may be done in a
similar way. For the phase-domain generalized moveout ap-
proximation, we emphasize that the horizontal slowness of
the selected reference ray must be close to the maximum
horizontal slowness. The maximum horizontal slowness cor-
responds to the intersection of two phase-domain seismic
travel-time curves coming from the upper and lower inter-
faces of a horizontal layer. The third numerical example in
the previous section shows that, for horizontally layered VTI
media, all phase-domain approximations, except the gener-
alized moveout approximation, suffer the problem of rapid
increase in error when the horizontal slowness tends to the
maximum. This indicates that the generalized moveout ap-
proximation helps reduce “data stretching” during the phase-
domain NMO correction. On the other hand, the “layer strip-
ping” velocity analysis is easier in the phase domain than in
the group domain since the horizontal slowness of a consid-
ered ray is preserved when passing through horizontal layers.
The first numerical example in the previous section shows
that when selecting the reference ray with the maximum hor-
izontal slowness, the phase-domain generalized moveout ap-
proximation is equivalent to the exact solution. It means that
the phase-domain generalized moveout approximation can be
used to invert medium parameters for a single horizontal VTI
layer without any loss of accuracy. For horizontally VTI me-
dia, this approximation may be used in the layer-stripping
approach.

To further obtain the interval vertical velocities and
Thomsen parameters, NMO velocities and quartic moveout
coefficients of pure P-waves and P–SV-waves are combined
by the generalized Dix-type formula for VTI media (Ursin
and Stovas 2005). This is based on the assumption that both
P-waves and P–SV-waves penetrate the same depth.
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CONCLUSIONS

The generalized moveout approximation is presented in the
phase and group domains. The generalized moveout ap-
proximation uses five parameters to describe travel times
of P–SV converted waves in vertically inhomogeneous VTI
media. A few relatively simple approximations are derived
from the generalized moveout approximation by certain
selections of parameters. The accuracy comparison with
other existing approximations for VTI models shows that
the generalized moveout approximation can replace the ex-
act solution to provide accurate travel times of P–SV con-
verted waves within a wide range of source–receiver off-
sets and horizontal slownesses for horizontally layered VTI
media.
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APPENDIX A

PARAMETRIC EQUATIONS FOR THE
P – S V - W A V E T R A V E L T I M E
IN A HOMOGEN E OUS V T I L A Y ER

In a homogeneous vertical transverse isotropy (VTI) medium,
P- and SV-waves can be characterized by the vertical velocities
α0 and β0 for P- and SV-waves and two Thomsen (1986)
parameters ε and δ. To represent the reflection travel time of
P–SV-waves, we adopt Stovas’ (2010a) notation of travel-time
parameters for P- and SV-waves in a horizontal VTI layer: P-
wave vertical velocity α0; the ratio between vertical SV- and
P-wave velocities r0 = β0/α0; P- and SV-wave one-way vertical
travel times tP0 = z/α0 and tS0 = tP0/r0 with z being the layer
thickness; and P- and SV-waves NMO factors a0 = 2δ and
b0 = 2(ε − δ)/r2

0 .
The vertical slowness for P- and SV-waves in a VTI

medium can be written as (Ursin and Stovas 2006)

q2
P(S)(p) = −1

2

[
−q2

α0(p) − q2
β0(p) + p2(a0 + b0)

±
√

(q2
α0(p) − q2

β0(p))2 − 2p2(r2
0 − 1)(b0 − a0)/(r2

0 α2
0) + p4

(
4b0(1 − r2

0 ) + (a0 + b0)2
)]

, (A-1)

where subscripts “P” and “S” denote P- and SV-waves, re-
spectively; the signs “+” and “-” in front of the square root
correspond to P- and SV-waves, respectively; the expressions
for qα0(p) and qβ0(p) are given by

q2
α0(p) = 1

/
α2

0 − p2, (A-2)

q2
β0(p) = 1

/
(r2

0 α2
0) − p2. (A-3)

For a horizontal and homogeneous VTI layer, the P–SV-
wave travel time t is represented in terms of horizontal slow-
ness p as follows

t(p) = xp + z(qP (p) + qS(p)). (A-4)

Here, slowness projections p, qP , and qS satisfy equation
(A-1) and the following equation:

dqP

dp
+ dqS

dp
= − x

z
. (A-5)

For a horizontal and homogeneous VTI layer, the source–
receiver offset x and travel time t of P–SV-waves are repre-
sented in terms of horizontal slowness p as follows:

x(p) = xP (p) + xS(p), (A-6)

t(p) = tP (p) + tS(p), (A-7)

where subscripts “P” and “S” denote P- and SV-waves, respec-
tively; the source–receiver offset and travel time formulations
are given by (Stovas 2010a)

xP (p) = pα2
0tP0

1 + a0 + S(p) + H(p)√
1 − p2α2

0(1 + a0 + S(p))
, (A-8)

tP (p) = tP0
1 + p2α2

0 H(p)√
1 − p2α2

0(1 + a0 + S(p))
, (A-9)

respectively, for the incident P-wave; and

xS(p) = pα2
0r0tP0

1 + b0 − S(p) − H(p)√
1 − p2α2

0r2
0 (1 + b0 − S(p))

, (A-10)

tS(p) = tP0
1 − p2α2

0r2
0 H(p)

r0

√
1 − p2α2

0r2
0 (1 + b0 − S(p))

, (A-11)

respectively, for the reflected SV-wave. Here, functions H(p),
S(p), and Q(p) are given by

H(p) = S(p)√
Q(p)

, (A-12)
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S(p) = 2b0 p2α2
0r2

0 (1 − r2
0 + a0)

(1 − r2
0 )
(
1 + (a0−b0)

(1−r2
0 )

p2α2
0r2

0 +√
Q(p)

) , (A-13)

Q(p) = 1 + 2(a0 − b0)
(1 − r2

0 )
p2α2

0r2
0

+ (4(1 − r2
0 )b0 + (a0 + b0)2)

(1 − r2
0 )2 p4α4

0r4
0 . (A-14)

APPENDIX B

ANALYTICAL EXPRESS IONS FOR B1 AND C1

In this Appendix, we derive the parameters B1 and C1 given in
group-domain generalized moveout approximation (1) for P–
SV-waves in a homogeneous vertical transverse isotropy (VTI)
layer. For the horizontal reference ray, the expressions for B1

and C1 given by equations (3) and (4) reduce to

B1 = t2
0 (1 − υ2

n P2
∞)

t2
0 − T2∞

− A
1 − υ2

n P2∞
, (B-1)

C1 = t4
0 (1 − υ2

n P2
∞)2

(t2
0 − T2∞)2 , (B-2)

where parameters T∞ and P∞ are determined from the asymp-
totic expansion of travel time squared at infinite offset, i.e.,

P∞ = lim
x→∞

(
dt(x)
dx

)
, (B-3)

T2
∞ = lim

x→∞

(
t2(x) − dt(x)

dx
t(x)x

)
. (B-4)

Equations (B-3) and (B-4) follow from equation (7).
Parameter P∞ given by equation (B-3) denotes the hori-

zontal slowness of the P–SV-wave ray with an infinite offset.
Parameter P∞ is identical to the maximum horizontal slow-
ness ph of P-waves in the VTI medium, i.e.,

P∞ = ph = 1

α0

√
1 + a0 + b0r2

0

. (B-5)

We rewrite the term inside the bracket in equation (B-4)
as

t2 − dt
dx

tx = (tP + tS)2 − p(tP + tS)(xP + xS)

= (t2
P − ptP xP ) + (t2

S − ptSxS)

+ (2tP tS − ptP xS − ptSxP ). (B-6)

By substituting equations (A-8)-(A-11) into equation
(B-6), we derive

t2 − dt
dx

tx = t2
P0

(
1 + 1

r2
0

)

+
t2
P0(1 + p2α2

0 H(p))
√

1 − r2
0 p2α2

0(1 + b0 − S(p))

r0

√
1 − p2(1 + a0 + S(p))α2

0

+
t2
P0(1 − r2

0 p2α2
0 H(p))

√
1 − p2(1 + a0 + S(p))α2

0

r0

√
1 − r2

0 p2α2
0(1 + b0 − S(p))

.

(B-7)

For the special case of the horizontal reference ray, the
horizontal slowness p becomes P∞ given by equation (B-5).
From equations (B-4) and (B-7), it follows that the asymptotic
traveltime intercept T∞ is given by

T2
∞ = ∞. (B-8)

Substitution of equations (25)-(27) and equations (B-5)
and (B-8) into equations (B-1) and (B-2) leads to the expres-
sions for B1 and C1, i.e.,

B1 = (1 + r0)(1 + a0 + (−1 + b0)r2
0 )2(1 + a0 + b0r2

0 )

2r0(1 + a0 + (1 + b0)r0)2(1 + a0 + (−1 + b0r0)r2
0 )

,

(B-9)

C1 = 0. (B-10)

For the special case of an isotropic medium (a0 = b0 = 0),
equation (B-9) is reduced to

B1 = 1 − r0

2r0
. (B-11)

APPENDIX C

ANALYTICAL EXPRESS IONS FOR B2 AND C2

In this Appendix, we derive the analytical expressions of B2

and C2 given in the phase-domain generalized moveout ap-
proximation (9) for P–SV-waves in a homogeneous vertical
transverse isotropy (VTI) layer. The general expressions for
B2 and C2 are given by equations (11) and (12), i.e.,

B2 = Pυ2
nτ 2

0 + τ̂ τ̂ ′

Pυ2
n

(
τ 2

0 − τ̂ 2 + P τ̂ τ̂ ′) + Aτ 2
0 P2υ2

n

τ 2
0 (1 − P2υ2

n ) − τ̂ 2
, (C-1)

C2 = (Pυ2
nτ 2

0 + τ̂ τ̂ ′)2

P2υ4
n (τ 2

0 − τ̂ 2 + P τ̂ τ̂ ′)2 + 2Aτ 2
0

τ 2
0 (1 − P2υ2

n ) − τ̂ 2
, (C-2)
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where τ̂ = τc(P) and τ̂ ′ = dτc
dp (P) denote the intercept of travel

time and its derivative with respect to the horizontal slowness
P for the non-zero offset reference ray, respectively.

From equation (8) and equations (A-6)–(A-11), we derive
the traveltime intercept τ as follows:

τ (p) = (tP − pxP ) + (tS − pxS)

= tP0

√
1 − p2α2

0(1 + a0 + S(p))

+ tP0

r0

√
1 − r2

0 p2α2
0(1 + b0 − S(p)). (C-3)

Taking the first-order derivative of equation (C-3) with
respect to horizontal slowness p leads to the expression for
τ ′, i.e.,

τ ′(p) = −(xp + xs)

= −pα2
0tp0

1 + a0 + S(p) + H(p)√
1 − p2α2

0(1 + a0 + S(p))

− pα2
0r0tp0

1 + b0 − S(p) − H(p)√
1 − p2α2

0r2
0 (1 + b0 − S(p))

. (C-4)

In equations (C-3) and (C-4), functions H(p) and S(p)
are given by equations (A-12)–(A-14) of Appendix A.

We consider the limit case that the non-zero horizontal
slowness reference ray becomes the horizontal ray. In this case,
the horizontal slowness p becomes the maximum horizontal
slowness for P-waves in a VTI medium given by equation
(B-5). Therefore, equations (C-3) and (C-4) become

τ̂ = lim
p→ph

τ (p) = tp0

r0

√
1 + a0 + r2

0 (−1 + b0r2
0 )

1 + a0 + b0r2
0

, (C-5)

τ̂ ′ = lim
p→ph

τ ′(p) = ∞. (C-6)

By substituting equations (C-5) and (C-6) into equations
(C-1) and (C-2), we obtain the analytical expressions for B2

and C2 given by

B2 = (1 + r0)(1 + a0 + (1 + b0)r2
0 )

2r0(1 + a0 + (1 + b0)r0)
, (C-7)

C2 = (1 + r0)2(1 + a0 + b0r2
0 )

(1 + a0 + (1 + b0)r0)2 . (C-8)

For the special case of an isotropic medium (a0 = b0 = 0),
equations (C-7) and (C-8) are reduced to

B2 = 1 + r2
0

2r0
, (C-9)

C2 = 1. (C-10)

APPENDIX D

MOVEOUT C OEFF IC IENTS FOR
P – S V - W A V E S IN A F A C T O R I Z E D V T I
MODEL

For a factorized vertical transverse isotropy (VTI) model, it
is often assumed that P- and SV-wave vertical velocities are
linearly increased with the depth z, and the ratio r0 between
P- and SV-wave vertical velocities and Thomsen (1986) pa-
rameters ε and δ are constant within this layer. Under these
assumptions, the vertical velocities of P- and SV-waves are
represented by equations (32) and (33), i.e.,

α(z) = α0

(
1 + γ − 1

H
z
)

, (D-1)

β(z) = r0α0

(
1 + γ − 1

H
z
)

, (D-2)

where α0 denotes the P-wave vertical velocity at the surface, H

is the thickness of the factorized VTI model, and γ = α(H)/α0

is the ratio between the vertical P-wave velocity to the bottom
and the vertical P-wave to the top of the layer.

The P–SV-wave travel time t is represented by an integral
with respect to the horizontal slowness p, i.e.,

t(p) = xp +
∫ H

0
(qP (z) + qS(z))dz, (D-3)

where subscripts “P” and “S” denote P- and SV-waves,
respectively.

In equation (D-3), the range of the horizontal slowness p

is given by

0 ≤ p ≤ 1

γα0

√
1 + a0 + b0r2

0

, (D-4)

where a0 = 2δ and b0 = 2(ε − δ)/r2
0 are normal moveout fac-

tors for the P- and SV-waves, respectively.
From equation (D-3), we derive the offset x(p) of P–SV-

waves, i.e.,

x(p) = −
∫ H

0
(∂pqP (p, z) + ∂pqS(p, z))dz, (D-5)

where ∂p denotes the first-order partial derivative with respect
to the horizontal slowness p.
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We expand the P-wave vertical slowness qP at the zero-
offset ray into a series in terms of the horizontal slowness p,
i.e.,

qP (p, z) = cP0(z) + cP2(z)p2 + cP4(z)p4 + · · · , (D-6)

where

cP0(z) = 1
α(z)

, (D-7)

cP2(z) = −1
2

α(z)(1 + a0), (D-8)

cP4 = −1
8

(1 + a0)2α3
0 − 1

2
b0r2

0 α3
0(1 + a0 − r2

0 )
1 − r2

0

. (D-9)

Similarly, the Taylor expansion of the SV-wave vertical
slowness qS is obtained as follows:

qS(p, z) = cS0(z) + cS2(z)p2 + cS4(z)p4 + · · · , (D-10)

where

cS0(z) = 1
r0α(z)

, (D-11)

cS2(z) = −1
2

r0α(z)(1 + b0), (D-12)

cS4 = −1
8

r3
0 (1 + b2

0)α3
0 + b0r3

0 (1 + 2a0 − r2
0 )α3

0

4(1 − r2
0 )

. (D-13)

By substituting equations (D-6) and (D-10) into equation
(D-5) and calculating the inverse series of equation (D-5), we
finally derive the following:

p(x) = − x
2d2

+ d4x3

4d4
2

+ 3(−4d2
4 + d2d6)x5

32d7
2

+ · · · , (D-14)

with

d0 = H(1 + r0) ln γ

r0α0(γ − 1)
, (D-15)

d2 = −1
4

H(1 + a0 + r0 + b0r0)α0(1 + γ ), (D-16)

d4 = −H(a2
0(1 + r0) + 2a0(1 + r0 + 2b0r2

0 )

+ (1 + r0)(1 − 2b0(−2 + r0)r2
0 + r3

0 + b2
0r3

0 ))

×α3
0(1 + γ + γ 2 + γ 3)/(32(1 + r0)), (D-17)

d6 = −Hα5
0(1 + γ + γ 2 + γ 3 + γ 4 + γ 5)

×(a3
0(1 + r0)2 + a2

0(3 + 6r0 + (3 + 4b0)r2
0 + 8b0r3

0 )

+ a0(3 + 6r0 + (3 + 8b0)r2
0 + 16b0r3

0

+ 4b0(1 + 2b0)r4
0 + 4(−1 + b0)b0r5

0 )

+ (1 + r0)(1 + r0 + 4b0r2
0 + 4b0r3

0 + 8b2
0r4

0

+ (−1 + b0)2(1 + b0)r5
0 + (−1 + b0)2(1 + b0)r6

0 ))

/(96(1 + r0)2). (D-18)

From equations (D-3), (D-6), (D-10), and (D-14), it fol-
lows that the P–SV-wave moveout expansion is written in the
following form:

t2(x) = t2
0 + x2

υ2
n

+ Ax4

2t2
0 υ4

n

+ Ex6

6t4
0 υ6

n

+ · · · , (D-19)

where

t0 = H(1 + r0) ln γ

r0α0(γ − 1)
, (D-20)

υ2
n = α2

0
r0(1 + a0 + r0 + b0r0)(γ 2 − 1)

2(1 + r0) ln γ
, (D-21)

A = 1
2

− ((1 + a0)2(1 + r0) + 4(1 + a0)b0r2
0 + (1 + b0)2r3

0 + (−1 + b0)2r4
0 )(1 + γ 2) ln γ

2r0(1 + a0 + r0 + b0r0)2(γ 2 − 1)
, (D-22)

E = 3d0(d2
2 d4 + 4d0d2

4 − d0d2d6)
2d4

2

. (D-23)

Note that dj , j = 0, 2, 4, 6, in equation (D-23) are given
by equations (D-15)–(D-18).

For the special case of a homogeneous VTI layer (γ =
1), we obtain the corresponding coefficients given by the
following:

t0 = H(1 + r0)
r0α0

, (D-24)

υ2
n = α2

0
r0(1 + a0 + (1 + b0)r0)

1 + r0
, (D-25)

A = − (1 + a0 + (−1 + b0)r2
0 )2

2r0(1 + a0 + (1 + b0)r0)2 , (D-26)
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E = 3(1 + a0 + (b0 − 1)r2
0 )2((1 + a0)2 + (1 + a0)(a0 − b0)r0

+ 2(1 + a0)(3b0 − 1)r2
0 + (1 + b0)(b0 − a0)r3

0

+ (1 + (b0 − 6)b0)r4
0 )/(4r2

0 (1 + a0 + (1 + b0)r0)4). (D-27)

APPENDIX E

MOVEOUT C OEFF IC IENTS FOR
P – S V - W A V E S IN A M U L T I - L A Y E R E D V T I
MODEL

For P–SV-waves in an N-layer vertical transverse isotropy
(VTI) model, the travel time is represented in terms of the
horizontal slowness, i.e.,

t(p) = xp +
N∑

i=1

(ziqPi (p) + zi qSi (p)), (E-1)

where zi denotes the thickness of the ith VTI layer, and qPi

and qSi denote the vertical slowness of P- and SV-waves in the
ith VTI layer. The expressions for qPi and qSi are similar to
the ones given by equation (A-1).

From equation (E-1), we derive the source–receiver offset
of P–SV-waves, i.e.,

x(p) = −
N∑

i=1

(
zi∂pqPi (p) + zi∂pqSi (p)

)
, (E-2)

where ∂p denotes the first-order partial derivative with respect
to the horizontal slowness p.

We expand the sum of terms given in equation (E-1) into
a series with respect to the horizontal slowness p at p = 0,
i.e.,

N∑
i=1

(ziqPi (p) + ziqPi (p)) = d0 + d2 p2 + d4 p4 + d6 p6 + · · · ,

(E-3)

where

dj =
N∑

i=1

ci
j , j = 0, 2, 4, 6, . . . (E-4)

with

ci
0 = tP0i

(
1 + 1

r0i

)
, (E-5)

ci
2 = −1

2
tP0iα

2
0i (1 + a0i + (1 + b0i )r0i ), (E-6)

ci
4 = − tP0iα

4
0i ((1 + a0i )

2(1 + r0i ) + 4(1 + a0i )b0i r
2
0i

+ (1 + b0i )
2r3

0i + (−1 + b0i )
2r4

0i )/(8(1 + r0i )), (E-7)

ci
6 = −tP0iα

6
0i ((1 + a0i )

3 + 2(1 + a0i )
3r0i

+ (1 + a0i )
2(1 + a0i + 4b0i )r

2
0i + 8b0i (1 + a0i )

2r3
0i

+ 4b0i (1 + a0i )(1 + 2b0i )r
4
0i

+ (1 + b0i (−1 + 4a0i (−1 + b0i ) + b0i (7 + b0i )))r
5
0i

+ 2(−1 + b0i )
2(1 + b0i )r

6
0i

+ (−1 + b0i )
2(1 + b0i )r

7
0i )/(16(1 + r0i )

2). (E-8)

Here the subscript “i” denotes the ith VTI layer, tP0i

denotes the one-way vertical travel time of P-waves in the ith
VTI layer, and α0i denotes the P-wave vertical velocity for the
ith VTI layer. r0i denotes the ratio between vertical velocities
of P- and SV-waves for the ith VTI layer, and a0i = 2δi and
b0i = 2(εi − δi )/r2

0i are NMO factors of P- and SV-waves in the
ith VTI layer, where εi and δi are Thomsen (1986) parameters
defined for the ith VTI layer.

From equations (E-1)–(E-3), it follows that the P–SV-
wave moveout expansion is written in the following form:

t2(x) = t2
0 + x2

υ2
n

+ Ax4

2t2
0 υ4

n

+ Ex6

6t4
0 υ6

n

+ · · · , (E-9)

where the zero-offset two-way travel time t0, normal moveout
velocity υn, coefficients A and E are given by

t0 = d0, (E-10)

υ2
n = −2d2

d0
, (E-11)

A = 1
2

+ d0d4

d2
2

, (E-12)

E = 3d0(d2
2 d4 + 4d0d2

4 − d0d2d6)
2d4

2

. (E-13)

Here, di , i = 0, 2, 4, 6, are given by equations (E-4)–(E-8).
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