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Analytic calculation of phase and group velocities of

P-waves in orthorhombic media

Qi Hao' and Alexey Stovas'

ABSTRACT

We have developed an approximate method to calculate
the P-wave phase and group velocities for orthorhombic
media. Two forms of analytic approximations for P-wave
velocities in orthorhombic media were built by analogy with
the five-parameter moveout approximation and the four-
parameter velocity approximation for transversely isotropic
media, respectively. They are called the generalized move-
out approximation (GMA)-type approximation and the
Fomel approximation, respectively. We have developed ap-
proximations for elastic and acoustic orthorhombic media.
We have characterized the elastic orthorhombic media in
Voigt notation, and we can describe the acoustic orthorhom-
bic media by introducing the modified Alkhalifah’s nota-
tion. Our numerical evaluations indicate that the GMA-
type and Fomel approximations are accurate for elastic
and acoustic orthorhombic media with strong anisotropy,
and the GMA-type approximation is comparable with the
approximation recently proposed by Sripanich and Fomel.
Potential applications of the proposed approximations in-
clude forward modeling and migration based on the
dispersion relation and the forward traveltime calculation
for seismic tomography.

INTRODUCTION

An elastic orthorhombic medium is described by nine indepen-
dent stiffness coefficients and the specification of three mutually
orthogonal planes of mirror symmetry. In each symmetry plane,
the medium exhibits transverse isotropy. In these kinds of media,
the P-wave phase and group velocities are characterized by all nine
independent density-normalized stiffness coefficients. Tsvankin’s

(1997) notation is widely used to parameterize elastic orthorhombic
media (Appendix A). On the other hand, orthorhombic models
under the acoustic assumption as an ideal case are practically useful
for seismic modeling, imaging, and inversion based on P-wave trav-
eltimes for orthorhombic media (Han and Xu, 2012; Xu and Zhou,
2014). For such models, the S-wave velocities along the three sym-
metry axes are assumed to be zero (Alkhalifah, 2003). Only six in-
dependent parameters are required to describe the P-wave phase and
group velocities in these kinds of media. Alkhalifah’s (2003) nota-
tion is normally used to parameterize the acoustic orthorhombic me-
dia (Appendix B). Besides, the weak anisotropy notation (Farra and
Psencik, 2003) is also widely used in studying wave propagations in
orthorhombic media.

For elastic and acoustic orthorhombic media, the P-wave phase
velocity as an explicit function of the phase angles (including the
polar and the azimuthal angles of phase propagation direction)
can be exactly calculated by solving a cubic equation from the Chris-
toffel equation with respect to the phase velocity squared (Schoen-
berg and Helbig, 1997). However, it is difficult to exactly calculate
the magnitude of P-wave group velocity from the group angles (sim-
ilar to the definition of phase angles, but corresponding to group
propagation direction) in a general orthorhombic medium no matter
whether the medium is elastic or acoustic. This is because there is no
exact and explicit relation for finding the group velocity for a given
ray-velocity direction. An approach to overcome this difficulty is to
exactly calculate the magnitude and direction of the group velocity
vector for each phase propagation direction by making use of ray-
tracing equations (Cerveny [2001], pp. 149-151), then numerically
map the variation of the group velocity versus the group direction.

Analytic representation for P-wave velocities is desirable for the
purpose of practical applications in seismic exploration. For in-
stance, from approximations for the phase velocity of P-waves,
one can easily obtain the dispersion relation that is very important
for the pseudowave modeling and reverse time migration (Song and
Alkhalifah, 2013); analytic formulations for the group velocity of
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P-waves are useful for calculating the ray traveltime in seismic
tomography (McMechan, 1983; Williamson, 1990; Eaton, 1993)
and inverting for medium parameters in homogeneous media (Mah-
moudian et al., 2014). Until now, several analytic approximations
have been proposed for the phase and group velocities of P-waves in
orthorhombic media: For general anisotropic media, linearizing
methods and the first-order perturbation theory are widely used
to obtain the analytic approximations for phase velocities in terms
of stiffness coefficients (Backus, 1965; Jech and PSencik, 1989;
Mensch and Rasolofosaon, 1997; PSencik and Gajewski, 1998).
These analytic approximations require fewer parameters for ortho-
rhombic media. For instance, for orthorhombic media, the phase
velocity formula proposed by PSencik and Gajewski (1998) de-
pends on six weak-anisotropy parameters. In their paper, they also
present approximate formulas for NMO velocities of P-waves in
general weakly anisotropic media. Farra (2001) extends the first-or-
der perturbation technique (Jech and PSencik, 1989; PSencik and
Gajewski, 1998; Mensch and Farra, 1999) to higher orders for phase
velocities of elastic waves in a general anisotropic medium. PSencik
and Vavrycuk (2002) and Farra (2004) propose the first-order for-
mulas for group velocities of body waves in general anisotropic me-
dia. Farra and PSencik (2013) provide the first- and second-order
approximations for group velocities and moveouts of body waves
in general anisotropic media, although their formulas for moveout
are numerically tested only for transversely isotropic media with a
vertical symmetry axis (VTI).

For orthorhombic media, the first-order approximations for
phase and group velocities of elastic waves were proposed by
Song and Every (2000) and Song et al. (2001) for weakly ortho-
rhombic media, respectively. Daley and Krebes (2004a, 2004b)
start in a different way to derive the first-order approximations
for the P-wave phase and group velocities in such media, which
are identical to those proposed by Song and Every (2000) and
Song et al. (2001). PSenc¢ik and Gajewski (1998) use the weak
anisotropy notation to characterize orthorhombic media and derive
the first-order approximation for the P-wave phase velocity.
Mensch and Farra (1999) derive the first-order approximation
for the P-wave eigenvalue from the Christoffel equation for ortho-
rhombic media, which can be easily transformed to the analytic
approximation for the P-wave phase velocity. As mentioned
above, this first-order approximation was generalized by Farra
(2001) to a higher order for elastic waves in general anisotropic
media. Tsvankin (1997) derives the P-wave phase velocity
approximation in terms of Thomsen-type parameters by assuming
the weak anisotropy of orthorhombic media. The P-wave travel-
time approximation for multilayered orthorhombic models is pro-
posed by Xu et al. (2005) and Vasconcelos and Tsvankin (2006),
and this approximation can be transformed to the analytic repre-
sentation of the P-wave group velocity for orthorhombic media.
Sripanich and Fomel (2014) recently propose an anelliptic
approximation for P-wave phase and group velocities in ortho-
rhombic media, and their formulation exhibits accurate results
for orthorhombic media with strong anisotropy.

Because the three symmetry planes of an orthorhombic media
exhibit transverse isotropy, all these approximations mentioned
above can be simplified to calculate phase and group velocities
of P-waves in transversely isotropic (T1) media. Apart from the ap-
proximations for orthorhombic media mentioned above, there are a
few other approximations for phase and group velocities in TI me-

dia (Thomsen, 1986; Dellinger et al., 1993; Daley et al., 2004; Fo-
mel, 2004; Berryman, 2008; Farra and PSencik, 2013). A recent
paper by Sripanich and Fomel (2014) presents a new anelliptic
approximation for the P-wave phase and group velocities in TI
and orthorhombic media. As we said before, moveout formulas
for a considered medium can be transformed to corresponding for-
mulas for group velocity. Therefore, group velocity approximations
can be found from the papers involving moveout approximations
(Alkhalifah, 1998, 2000; Ursin and Stovas, 2006; Fomel and Sto-
vas, 2010; Stovas, 2010). A recent review of nonhyperbolic move-
out approximations for VTI media can be found in Golikov and
Stovas (2012). The accuracy of approximations for TI media will
not be numerically investigated here.

In this paper, we devise a method to analytically calculate phase
and group velocities of P-waves in an orthorhombic medium. In this
method, anelliptic functions depending on horizontal and vertical
velocities are involved in building approximations for the phase
and group velocity surfaces. Furthermore, we propose two types
of approximations: One has the form of the generalized moveout
approximation (GMA) (Fomel and Stovas, 2010; Stovas, 2010; Sto-
vas and Fomel, 2012), and we call it the GMA-type approximation,
and the other has the form of the Fomel (2004) approximation, and
we call it the Fomel approximation. The GMA-type approximation
is developed from the five-parameter approximation for the P-wave
traveltime in the heterogeneous media, whereas the Fomel-type
approximation arises from the four-parameter approximation for
P-wave velocities in TI media.

To express phase and group velocities approximations for elastic
and acoustic orthorhombic media, we adopt two different notations
in this paper: The density-normalized stiffness coefficients c;; in
Voigt notation are involved in the phase and group velocities of
P-waves for elastic orthorhombic media; the modified Alkhalifah
notation (Appendix B) is used for acoustic orthorhombic media.
Besides, Tsvankin’s (1997) notation is used in the section “Numeri-
cal examples” for acoustic orthorhombic models. To describe the
phase and group propagation directions of P-waves, it is assumed
that the normals to the three symmetry planes of an orthorhombic
medium coincide with the Cartesian coordinate system that obeys
the right-hand rule, the [x, y] plane is horizontal, and the z-axis al-
ways points downward.

The paper is organized as follows: First, we discuss the approxi-
mations for phase and group velocities of P-waves in the next two
sections. Then, the comparison of accuracy between our approxima-
tions and other existing approximations is shown in numerical exam-
ples. Finally, we discuss the disadvantages of our approximations.

ANELLIPTIC APPROXIMATIONS
FOR PHASE VELOCITY

The GMA-type approximation

By analogy with the formula of GMA for a horizontal VTI layer
(Stovas, 2010), the GMA-type approximation for the P-wave phase
velocity in orthorhombic media is defined as

13(60.9) = (1= w(p))(acos? 0+ b(g)sin® 6)

+w(p) \/a2 cos* 0+ 2d(¢p)acos® @sin® @ + ¢*(¢)sin* 6,
(1)
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where 6 and ¢ are the polar and azimuthal angles of phase propa-
gation direction, measured from the positive z-axis (0 < 6 < ) and
in a positive sense from the x-axis (0 < ¢ < 2x), respectively; w(¢)
is an azimuth-dependent weight used to link the elliptic and anel-
liptic parts of 3; a is the phase velocity squared of vertically propa-
gating P-waves; b(¢), d(¢), and e(¢) are functions of the azimuth
@. Equation 1 is called the GMA-type approximation because it has
a form similar to the GMA (Fomel and Stovas, 2010; Stovas, 2010;
Stovas and Fomel, 2012). The Taylor expansions of the exact P-
wave velocity squared with respect to € approximately 0 = 0°
and 90° are used to determine all parameters in equation 1. The ex-
act phase velocity squared of P-waves is expanded up to the fourth
order with respect to the polar angle 8, approximately € = 0:

V3 (0, ) = my + my()0* + my()6*, )

where m;, i = 0,2,4 denote the series coefficients. These coeffi-
cients are defined in the first section of Appendix C. The sec-
ond-order expansion along the horizontal direction is given by

13(0.9) = no(e) + nay (@) (0 — x/2)% 3)

where the azimuth-dependent series coefficients ng(@) and n,(¢)
are defined in the second section of Appendix C. The series coef-
ficients in equations 2 and 3 are analytically represented in terms of
medium parameters. For an elastic orthorhombic medium, the
medium parameters are the density-normalized stiffness coefficients
c;j; for an acoustic orthorhombic medium, the medium parameters
are defined in Appendix B. By matching series expansions 2 and 3
with the corresponding expansions of the GMA-type approximation
1, we determine all parameters in the GMA-type approximation 1,

a = m, “)

®)

by (p) =3n3— (3mg +my —6my)n3 +2(my +3my)non,

— (3m3 + 8mgmy +3m3 + 6momy ) ng +3(my +my)>,

(6)
by (@) = 3mi + m3(4my — 6my — 3ny + 3n,)
+ mo(3m3 + 6my(ny + n,)
=3ng(ng + 2ny) + 2my(ng + 4ny))
+3(my = ng)*(no + na), @)
d(p) = 2my(my +3my) | my(ng —my —my) ®)
3(ng —my —my) nog+ny—mgy
my(ng — my —m
e(g) = - o(ng 0 2) )

ng + ny — my

and

_ 3(mg+my—ng)* (mo—no—n,)
2m(3mg+3m3+mo(5my =3 (my+2n0))+ma(=5ng+n)+3(ng+mang+ny))”

(10)

w(p)

The argument ¢ is omitted for functions b,(¢), by(@), my(p),
my (@), no(p), and ny(¢p) in the right sides of equations 5-10.

The Fomel approximation

A four-parameter anelliptic approximation is proposed by Fomel
(2004) for phase and group velocities of P-waves in a TI medium.
By analogy with this approximation, the Fomel approximation for
phase velocity of P-waves in an orthorhombic medium is defined as

v3(0.9)
= (1 = s(@))(acos*d + c(¢)sin’ 0)

+ s(p) \/(a cos? @ + c(¢)sin® 6)* + 2%6052 fsin? 0,

Y

where the parameter a is the phase velocity squared of vertically
propagating P-waves, and functions c¢(¢), f(¢), and s(¢p) can be
obtained in a similar way as we used for the GMA-type approxi-
mation 1. We match the fourth-order expansions of equation 11 and
the exact phase velocity squared along the vertical direction. The
only difference is that here we match the approximate phase veloc-
ity from equation 11 and the exact phase velocity in the horizontal
direction. In other words, the second-order coefficient n, in equa-
tion 3 is not used. Consequently, the parameters in the Fomel
approximation 11 are given by

c(p) = no, (12)
fl@) = mo(my + my — ny), (13)
3(mg 4 my — ng)*

slo) = - 6(my — ng)ng + 2mo(my + 3(my +ngy))’ (1

and the parameter a is given by equation 4. The argument ¢ of func-
tions m, (¢), my4(p), and ny(g) is omitted in the right sides of equa-
tions 12-14.

The simplified Fomel approximation for acoustic
orthorhombic media

The Fomel approximation discussed above can be further sim-
plified for acoustic orthorhombic media. The azimuthal weight
function s(¢) in equation 11 is found to be insensitive to the azi-
muth ¢ by numerical experiments and can be approximated by a
constant s(¢) ~ 1/2. To illustrate this idea, Figure 1 shows an ex-
ample of the variation in the weight s(¢) versus the azimuth ¢.
From this figure, we can see that the deviation of the weight
s(p) from one half is very small. For acoustic VTI media,
the weight s(¢) becomes one half (Fomel, 2004). Therefore,
the weight s(¢) in equation 11 is assumed to be a constant
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s(p) =1/2. Thus, we obtain the simplified version of the Fomel
approximation for acoustic orthorhombic media,

v3(0. )

1
= 51/12,0 (cos? 0 + a(p)sin® 0)

1
+ Evl%o\/(cosz 0 + a(@)sin® 0)% + 4B(¢p)cos? Osin’ 0,

s)

with

1 .
a(p) =§(rz§§cos2¢+r1§% sin? )

1 ) 1 .
+§\/(r2§%cosz(p—|—r1§% smzfp)z—!—?rl rE2Esin? (2¢),
3

(16)

and

Bl@) = rysin® ¢ + rycos? ¢ — alg), (17)

where ry, 75, &1, &, and &5 are parameters defined in the modified
Alkhalifah notation (Appendix B). This new approximation is far
simpler than the GMA-type approximation 1 and the Fomel
approximation 11.

ANELLIPTIC APPROXIMATIONS
FOR GROUP VELOCITY

The GMA-type anelliptic approximation

The GMA-type group velocity approximation has the following
form:

I./]Z)(G’ (D) - (1 - ‘/V(czs))(ACOS2 ®+B(@)Sin2 G))

+W(d) \/A2 cos* @ +2D(P)A(®)cos? Osin? © + E%(P)sin* ©.

(18)
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Figure 1. The variation in weight function s(¢) from the Fomel
approximation versus the azimuth ¢ of phase propagation direction
for an acoustic orthorhombic medium. The medium parameters in
Tsvankin’s notation are vpy = 3.0 km/s, £ = 0.25, §() = 0.05,
e? =0.15, 6@ = -0.05, and 6® = —0.1.

The form of this approximation is the 3D extension of the 2D group
velocity formula transformed from the GMA (Fomel and Stovas,
2010; Stovas, 2010). Here, ® and @ denote the polar and azimuthal
angles of group propagation direction, measured from the positive
z-axis (0 <®<nx) and in a positive sense from the x-axis
(0 £ @ < 2x), respectively; W(®) is the azimuth-dependent
weight; A is the inverse of P-wave vertical velocity squared;
B(®), D(®), and E(®) are coefficients dependent on the azimuth
@. To determine all these parameters, we adopt the same approach
as for the phase velocity approximation 1 by matching the Taylor
expansions of approximation 18 with the corresponding expansions
of the exact group velocity squared along the vertical and horizontal
directions. The inverse of the exact group velocity squared of P-
waves is expanded into up to the fourth order with respect to the
polar angle ® along the z-axis:

1
— =My + M,(D)®? + M, (D)B* 1
12(0.9) 0+ My ()0 + M4(P)0*, (19)

where the expressions for series coefficients M;, i = 0,2,4 are de-
rived in the first section of Appendix D. The second-order expan-
sion along the horizontal direction yields

m = No(®) + No(®)(© - 7/2)*.  (20)

where the expressions for series coefficients N;, i = 0,2 are shown
in the second and third sections of Appendix D. The parameter A
and coefficients B(®), D(®), and E(®) in approximation 18 are
determined in a similar way to that in approximation 1. Conse-
quently, they are obtained by replacing the lowercase letters in equa-
tions 4-10 by the corresponding uppercase letters.

The Fomel approximation

Corresponding to the phase velocity approximation 11, the Fomel
approximation for the P-wave group velocity is defined as

2(0,0) =(1-S8(®))(Acos? @ + C(P)sin ©)

F(o)
S(®)

+S(D) \/(A c0s? @ + C(P)sin? @) +2 cos’? @sin’ @,

21

where A, S(®), C(®), and F(P) are determined by replacing the
lowercase letters in equations 4, 12—14 by the corresponding upper-
case ones.

NUMERICAL EXAMPLES

In this section, we compare the accuracy of the proposed approx-
imations and existing approximations for phase and group veloc-
ities in elastic and acoustic orthorhombic media. For the P-wave
phase velocity, the existing approximations used here are the Tsvan-
kin (1997) approximation with six parameters, first-order approxi-
mation (Song et al., 2001; Daley and Krebes, 2004a, 2004b), the
Farra (2001) second-order approximation with nine parameters,
and the Sripanich and Fomel (2014) approximation with nine
parameters. For P-wave group velocity, the existing approximations
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used for comparisons include the six-parameter approximation pro-
posed by Xu et al. (2005) and Vasconcelos and Tsvankin (2006), the
first-order approximation (Song and Every, 2000; Daley and
Krebes, 2004b) with six parameters, the Sripanich and Fomel
(2014) approximation with nine parameters, the PSencik and Vav-
rycuk (2002) approximation with six weak anisotropy parameters,
and the second-order approximation (Farra and PSencik, 2013) with
six weak anisotropy parameters and a factor (the ratio of P- and S-
waves velocities in reference isotropic media). The reference iso-
tropic media for the PSencik and Vavrycuk (2002) approximation
and the second-order approximation (Farra and PSencik, 2013) are
determined by the P- and S-waves velocities along the vertical axis
of elastic orthorhombic media. The surfaces of phase and group
velocities from all approximations mentioned above and ours are
symmetric with respect to the coordinate origin and symmetry planes
for an orthorhombic medium no matter whether the considered
medium is elastic or acoustic. For simplicity, we will plot the velocity
error for one-eighth of the velocity surface of P-waves in a considered
orthorhombic medium. In other words, polar angle and azimuth of
phase (group) propagation direction are taken from 0° to 90°.

To test the accuracy of the proposed approximations, we first
adopt the elastic orthorhombic model used by Schoenberg and Hel-
big (1997) and Sripanich and Fomel (2014). Figure 2 shows the
accuracy comparison of our approximations with other existing ap-
proximations for phase velocities of P-wave. From this figure, we
can see that the GMA-type approximation for phase velocities is the
most accurate one. Its maximum relative error in the phase velocity

a) b)

20 20

40 T, ‘
O(degree) 60 ¢ 20

20 . N
40
O(degree)

20 20

4
9(degree9

40 T
6(degree) 60 -

40
B(degree) 60 -

is less than 0.002%. We can also see that the Fomel approximation
is comparable with the nine-parameter approximation proposed by
Sripanich and Fomel (2014) and the second-order approximation
proposed by Farra (2001), but the Fomel approximation does not
behave so well as the GMA-type approximation in the two vertical
symmetry planes of this orthorhombic model. Figure 3 shows the
accuracy comparison for a few group velocity approximations. Sim-
ilar to Figure 2, the ranges of polar angle ® and azimuth @ are taken
from 0° to 90° because the group velocity surface has the same sym-
metric properties as the phase velocity surface for an orthorhombic
medium. The accuracy of the GMA-type approximation for group
velocity is much worse than the corresponding one for phase veloc-
ity. This is because the series coefficient N, in equation 20 is ap-
proximately calculated for the GMA-type approximation for group
velocity. The Fomel approximation for group velocity is accurate
but worse than the GMA-type approximation. In this example,
we can see that the Fomel and GMA-type approximations are com-
parable with the Sripanich and Fomel (2014) approximation and the
second-order approximation (Farra and PSencik, 2013).

In the second example, we adopt the acoustic orthorhombic
medium used in Figure 1. From the medium parameters in Figure 1,
we can calculate the parameters in the modified Alkhalifah’s nota-
tion (Appendix B) to use the proposed approximations for acoustic
orthorhombic models. Figures 4 and 5 show the accuracy com-
parisons between approximations for phase and group velocities,
respectively. Figure 4 indicates that all three proposed approxima-
tions for phase velocity (including the GMA-type approximation,

Figure 2. Relative error in P-wave phase velocity
for (a) Tsvankin (1997), (b) the first-order (Song
et al., 2001; Daley and Krebes, 2004a, 2004b),
(c) Farra (2001) second order, (d) Sripanich and
Fomel (2014), (e) the Fomel, and (f) the
GMA-type approximations for an elastic ortho-
rhombic model. The density-normalized stiftness
40¢(degree)  coefficients of this model include c;; = 9.0,

Clp = 36, Ci3 = 225, Cyp = 984, Cy3 = 24,

C33 = 59375, Cqq = 20, Cs5 = 16, and Cee —

2.182, where c;; have the dimension of (km/s)2.
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the Fomel approximation, and the simplified version of the Fomel
approximation) are very accurate, compared with other existing
approximations. From the viewpoint of practical implementations,
the simplified Fomel approximation is most attractive because of its
simple and compact forms. From Figure 5, we can see that the
GMA-type and the Fomel approximations for group velocities
are more accurate than other ones.

Next, we quantitatively calculate maximum errors of our approx-
imations for the phase and group velocities. Table 1 shows four elas-
tic orthorhombic models from rock physics experiments and
physical models. Tables 2 and 3 illustrate the maximum relative er-
ror of our approximations and other existing approximations in
phase and group velocities, respectively. From Table 2, we can
see that for the phase velocities of P-waves, the GMA-type approxi-
mation is more accurate than the Fomel approximation, although
the maximum errors of the GMA-type and Fomel approximations
are small enough. In contrast, Table 3 indicates that for the group
velocity of P-waves, the GMA-type approximation does not always

Figure 3. Relative error in P-wave group velocity )
for (a) Xu et al. (2005) and Vasconcelos and
Tsvankin (2006), (b) the first-order (Song and
Every, 2000; Daley and Krebes, 2004b), (c) Sripa-
nich and Fomel (2014), (d) PSencik and Vavrycuk
(2002), (e) the second-order approximation (Farra
and PSencik, 2013), (f) the Fomel, and (g) the
GMA-type approximations for an elastic ortho-
rhombic model. The model parameters are the
same as for Figure 2.
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behave better than the Fomel approximation. The GMA-type and
Fomel approximations are very accurate, as are the Sripanich
and Fomel (2014) approximation and the second-order approxima-
tion (Farra and PSencik, 2013) because their maximum relative er-
rors are less than 0.4% for all given models.

In the last example, we show the maximum relative error of dif-
ferent approximations in the case of acoustic orthorhombic models.
The density-normalized stiffness coefficients in Table 1 are con-
verted to the Thomsen-type parameters in Tsvankin’s notation (Ap-
pendix A). The corresponding acoustic models can be further
obtained by neglecting the S-wave velocity parameter vg, and
Thomsen-type parameters 1) and y® in Tsvankin’s notation. Ta-
ble 4 lists four acoustic orthorhombic models corresponding to the
elastic models shown in Table 1. Tables 5 and 6 show maximum
relative errors of approximations for phase and group velocities, re-
spectively. From Table 5, we can see that the GMA-type and Fomel
approximations for phase velocity are very accurate and stable for
all given acoustic orthorhombic models; the simplified version of
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the Fomel approximation is also accurate and stable, although its
accuracy is slightly lower than the Fomel approximation. From
Table 6, we can see that for group velocities of P-waves, the
GMA-type approximation is not always relatively accurate com-
pared with the Fomel approximation. This phenomenon is the same
as for elastic orthorhombic models shown in the previous example.
It indicates that for phase and group velocities of P-waves in acous-
tic orthorhombic models, the Fomel approximation acts as an alter-
native of the GMA-type approximation.

DISCUSSION

The group velocity of a considered body wave is intrinsically
linked to its moveout. The formulas for phase and group velocity
approximations can be built by analogy with the forms of moveout
approximations. Based on this fact, we propose the GMA-type
approximation for P-wave phase and group velocities in orthorhom-
bic media. Compared with the GMA-type approximation, the Fo-
mel approximation does not require the second-order derivative of

a) b)
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O(degree)
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- 20
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40
O(degree)

40
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velocity squared with respect to polar angle for the horizontal plane
of an orthorhombic medium. Although the proposed approxima-
tions are derived for orthorhombic media requiring the symmetry
planes of medium to coincide with the coordinate planes, a simple
coordinate rotation is enough to apply the proposed approximations
for tilted orthorhombic media.

The disadvantage of the proposed approximations is obvious:
First, the proposed approximations have complex forms compared
with existing approximations; many parameters are used in general
forms of the proposed approximations (including the GMA-type
and Fomel approximations). Second, the proposed approximations
have no symmetric forms with respect to exchanging the three prin-
cipal axes of an orthorhombic medium. This is different from the
approximation proposed by Sripanich and Fomel (2014), the first-
order approximations (Song and Every, 2000; Song et al., 2001;
Daley and Krebes, 2004a, 2004b) and the approximations proposed
by PSencik and Vavrycuk (2002), and by Farra (2004). The pre-
ferred axis of the proposed approximations is the vertical axis,
around which the result is relatively accurate. Finally, the proposed

Figure 4. Relative error in P-wave phase velocity
for (a) Tsvankin (1997), (b) first-order (Song et al.,
2001; Daley and Krebes, 2004a, 2004b), (c) Farra
(2001) second-order approximation, (d) Sripanich
and Fomel (2014), (e) the Fomel, (f) the simplified
80 Fomel, and (g) the GMA-type approximations for
an acoustic orthorhombic model. The model
parameters are the same as for Figure 1.
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approximations cannot be easily extended to anisotropic media of
lower symmetry such as monoclinic media because it is very difficult
to obtain the Taylor expansions of phase velocity squared and the in-

Figure 5. Similar to Figure 3 but for the acoustic =~ a)
orthorhombic model used in Figure 1.
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verse of group velocity squared with respect to polar angles of phase
and group velocity directions, to determine coefficients in the formulae
for the GMA-type and Fomel approximations for that media.
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Table 1. Density-normalized stiffness parameters (unit: km?/s?) for orthorhombic models. Models 1-4 are taken from Mah and
Schmitt (2003), Mahmoudian et al. (2014), Sano et al. (1992), and Miller and Spencer (1994) respectively.

Models C11 (5] €33 Caq Css Ce6 C12 C13 €23
1 15.9 15.5 11.1 34 3.0 3.8 7.0 6.8 6.9
2 8.70 13.25 12.25 2.89 2.34 2.28 4.68 5.07 5.13
3 13.75 18.49 21.39 8.55 7.57 7.38 2.30 2.77 2.02
4 6.30 6.871 5411 1.00 0.80 1.50 2.70 2.25 2.393
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Table 2. Maximum relative error in phase velocity for different approximations for models listed in Table 1. The abbreviations
S and F, Fomel, and GMA-type stand for the Sripanich and Fomel (2014), the Fomel, and GMA-type approximations,
respectively; Tsvankin, First-order, and Farra stand for Tsvankin (1997) approximation, the first-order approximation

(Song et al., 2001; Daley and Krebes, 2004a, 2004b), and Farra second-order approximation (Farra, 2001), respectively.

Models Tsvankin (%) First order (%) Farra (%) S and F (%) Fomel (%) GMA type (%)
1 0.721 0.544 0.065 0.078 0.059 3.0x 1073
2 0.507 0.995 0.121 0.052 0.069 2.1x10™
3 4.198 1.090 0.203 0.207 0.209 53%x1073
4 1.282 0.932 0.148 0.724 0.186 7.0x 1074

Table 3. Maximum relative error in group velocity for different approximations for models listed in Table 1. The headings X
and V, first order, second order, and Fomel stand for Xu et al. (2005) and Vasconcelos and Tsvankin (2006) approximation, the
first-order approximation (Song and Every, 2000; Daley and Krebes, 2004b), the second-order approximation (Farra and
PSencik, 2013), and the Fomel approximation, respectively. The abbreviations S and F, P and V, and GMA type stand for
Sripanich and Fomel (2014), PSenc¢ik and Vavrycuk (2002), and the GMA-type approximations, respectively.

Models X and V (%) First order (%) S and F (%) Pand V (%) Second order (%) Fomel (%) GMA type (%)

1 0.202 1.218 0.037 1.894 0.114 0.060 0.368
2 1.344 3.846 0.126 2.070 0.345 0.057 0.107
3 0.840 1.295 0.079 2.523 0.261 0.218 0.109
4 4.958 7.767 0.572 2.075 0.437 0.156 0.167

Table 4. Acoustic orthorhombic models converted from the elastic ones shown in Table 1.

Models vpo (km/s) ) s e® s 50

1 3.332 0.198 0.274 0.216 0.169 -0.077
2 3.500 0.041 -0.102 -0.145 -0.178 0.065
3 4.625 -0.068 -0.097 -0.179 -0.142 0.303
4 2.326 0.135 -0.166 0.082 -0.240 -0.089

Table 5. Similar to Table 2 but for the acoustic orthorhombic models listed in Table 4. Simplified stands for the simplified
Fomel approximation.

Models Tsvankin (%) First order (%) Farra (%) S and F (%) Fomel (%) Simplified (%) GMA type (%)

1 0.681 0.423 4.25x1072 2.81x 1072 1.52x 1072 2.10x 1072 9.5x 107
2 0.367 0.789 7.61x 1072 5.74 x 1072 3.12x 1072 4.45x 1072 6.3x 1073
3 3.889 0.624 7.28 x 1072 2.17x 1072 1.73 x 1072 2.39x 1072 9.3x107*
4 1.037 0.754 9.90 x 1072 0.458 1.86 x 1072 3.04x 1072 2.4x1074

Table 6. Similar to Table 3 but for the acoustic orthorhombic models listed in Table 4.

Models X and V (%) First order (%) S and F (%) Pand V (%) Second order (%) Fomel (%) GMA type (%)

1 0.202 1.312 0.082 1.995 0.129 0.072 0.167
2 1.546 3.792 0.131 2.283 0.374 0.076 0.021
3 0.705 0.964 0.070 2.864 0.287 0.083 0.384
4 4.785 7.651 0.754 2219 0.446 0.311 0.311
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CONCLUSIONS

The proposed approximations (including the GMA-type and Fo-
mel approximations for phase and group velocities and the simpli-
fied Fomel approximation for phase velocity) are accurate for elastic
and acoustic orthorhombic media with strong anisotropy. For the
acoustic orthorhombic model, the Fomel approximation for phase
velocities can be reduced to a simple and accurate formula. As we
stated in the “Introduction” section, the potential applications of the
proposed approximations include forward modeling and migration
based on the dispersion relation and the forward traveltime calcu-
lation for seismic tomography.
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APPENDIX A

TSVANKIN’S NOTATION FOR
ORTHORHOMBIC MEDIA

In this appendix, we show the definition of Thomsen-type
parameters in Tsvankin’s (1997) notation. Tsvankin’s (1997) no-
tation includes two velocity parameters and seven dimensionless
anisotropy parameters. The definition of these parameters is as
follows:

1) vpy — the velocity of the vertically propagating P-wave:

Upg = /€33 (A-T)

2) vgg — the velocity of the vertically propagating S-wave po-
larized in the x-direction:

Ugp = /Cs5 (A—Z)
3) &), 50,y — the Thomsen-type VTI parameters defined in

the [y, z] plane (the superscript 1 corresponds to the x-axis nor-
mal to the [y, z] plane):

Cry = C
el = —222c 3 (A-3)
3

s = (€23 + caa)’ = (€33 — caa)?
2c33(c33 — ca4)

. (A-4)

_ C66 — Css5
yW==0— (A-5)
2c 55
4) @ 6@ ¢y _ the Thomsen-type VTI parameters defined in
the [x, z] plane (the superscript 2 corresponds to the y-axis nor-
mal to the [x, z] plane):

£? = 76112; €33 , (A-6)
33

52 = (c13 + e55)° = (€33 = €55)°

) (A7)
2c33(c33 = €55)
Ce6 — Caq
yP=="— (A-8)
Cy4
5) 83) — the Thomsen-type VTI parameter defined in the [x, y]

plane (the superscript 3 corresponds to the z-axis normal
to the [x, y] plane; the x-axis plays the role of the symmetry axis):

50 = (c12 + c65)* = (c11 — Co6)’ (A-9)
2cy1 (e = ceo)

APPENDIX B

THE MODIFIED ALKHALIFAH’S NOTATION FOR
ACOUSTIC ORTHORHOMBIC MEDIA

Alkhalifah’s (2003) notation is used to describe an acoustic ortho-
rhombic medium. For this set of media, the S-wave velocity along the
principal axes is assumed to be zero. Therefore, only six independent
parameters are required to describe the velocities and traveltimes of P-
waves in an acoustic orthorhombic medium. The definition of param-
eters in Alkhalifah’s (2003) notation is as follows:

1) vpy — the velocity of the vertically propagating P-wave:

Upp = 1/C33 (B-1)
2 L0

Unpo> Ynmo —  the NMO-velocities of P-waves defined in the
[y, z] and [x, z] planes:

) _ [exs(ca3 4 2¢u) + C33Cu4
V1<\113/10 = (B-2)
C33 — Cyq4
2 ci3(cy3 + 2¢s5) + €33C55
”1(\113/10 = (B-3)
€33 = Cs5
3) 5, #® — the anellipticity parameters of P-waves defined in
the [y, z] and [x, z] planes:
€22(C33 = Cy4 1
y(V) = ( ) _ (B4)

2¢p3(C3 + 2¢44) + 2¢33¢44 2
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c(e3z — ¢ 1
@ = 1133 55) ! (B-5)
2c13(c13 + 2¢55) + 2¢33¢55 2
4) 63) — the Thomsen-type parameters defined in the [x, y]

plane:

53 = (c12+ co6)® — (€11 = C6)° (B-6)
2¢pi(en = ces)

To simplify the derivation of approximations for phase and
group velocities for acoustic orthorhombic media, we propose
the modified Alkhalifah’s notation: The vertical velocity parameter
vpy of P-waves is conserved, whereas the other five parameters
(equations B-2 to B-6) in Alkhalifah’s notation are replaced by
the following new parameters:

=1/1+2p0) = \/ (e — ca) . (B

€33+ 2¢03C44 + 3344

=/1+ 27 e (33 — es5) (B-8)
i3 + 2c13¢s5 + C33C55)

=./1 2y cxn(Cii = Cos) (B-9)
¢ty 4+ 2¢12¢66 + C11C66

Cza +2cp3¢44 + C33C4

033(6‘33 - C44)

rp=1+260 , (B-10)

ciy + 2c13¢55 + €33Css

C33(6’33 - Css)

ra=14260 = (B-11)

In equation B-9, 73 denotes the anellipticity parameter defined in
the [x, y] plane (Grechka and Tsvankin, 1999). It can also be ex-
pressed in terms of the Thomsen-type parameters:

e — ) _ 50)(1 4 26
4 = oz (B-12)
(1 1 26@)(1 + 260))

The P-wave slowness surface equation (Alkhalifah, 2003) can thus
be written as

> 1 filpi.pa)

p3 = , (B-13)
} Vlznofz(l?h Pz)

where (p1, p,, p3) denotes the phase slowness vector and functions
f1(p1.p2) and f5(py. pa) are given by
filpi.pa) = (1 "151172”130)(1 - ”25%17%1/}%0)

52 rl”z‘f fzplpzl/poa (B-14)

F2(p1p2) = 1+ (1 = &) p3vpy + r(1 = &) pivpy

— 1 rQpipav, (B-15)
with
88 2¢
Q=8+8-88+22-=22 (B-16)
& &
APPENDIX C

TAYLOR EXPANSIONS OF THE EXACT P-WAVE
PHASE VELOCITY SQUARED

In this appendix, we compute the series coefficients of the P-
wave phase velocity squared at vertical and horizontal directions
of an orthorhombic medium.

The Taylor expansion along the z-axis

The exact solution for the P-wave phase velocity in an elastic
orthorhombic medium can be found in Every (1980) and Schoen-
berg and Helbig (1997). The P-wave phase velocity squared along
the vertical direction is expanded with respect to the polar angle 6 of
phase propagation direction up to the fourth order:

VE(9.0) = my + my(9)0* + my()6*, (C-D

where the series coefficients m;, i = 0,2,4, are

mgy = Cs3, (C-Z)

2
(ci3 +2ci3¢55 + c33¢55)

my = —Cj33 + = Cos™ @
€33 — Cs5
2
CHy + 2C2 Cqq + C33C44) .
+ ( 23 3 33 )sz o, (C-3)
C33 — Cyq4

my = My, cos* ¢ + My cos? g sin® ¢ + Myyy sin* ¢,
(C-4)

with

1
_ 4 2 2 2 4
Myyy = — 3 (3cfs = 3epierzess + cize3; — €33

3(c33 —cs5)
+ (3cis(err +4ei3) + ei3(=6¢1; + ¢13)es3

+ 2c13¢%; +4c3;3)css

+ (2¢13 = ¢33) (3¢ + 8cy3 + 5¢33) ¢35

+ (3¢11 + 8cy3 + Sc33)cls), (C-5)
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1
33— 6’44)2(033 - Css)2

4 3 .2 2
—=5c33¢44 433364 +2003¢53¢a4(—C33 + Cag)

_ 2 .3 5 ..2.2 .
m4xy_3( (—c33033+203; +c33635¢0

— c%3c§3c‘55 — 5c‘3‘3655 - 2c%3c33c44c55 +6clzc§3c44055
+12C‘§3C44C‘55 — 6012633634055 - IOC§3ci4055
—2cp3¢33(3¢12(—C33 + Cag) +caa(c33 +2c44) )55

- 6%3633625 + 3c%3c§5 +4c%3c44c§5 - 6012c33c44c§5
—10c3;5cqu¢ks + 6015302+ 10c33¢%, ¢34

—2¢23(3cia(e33 —caa) +(c33 —4044)644)0%5

+3(c33(c3 4 cas) + (=3 4 €33 = 2¢44) c55)*Ce6
+2¢13(3c1a(e33 = cas) (a3 +caa)(c33 = C55)
+cs5(—c33(c33 + cazcas +c3y) + (€33 = 2¢33¢44 +4¢y ) 55
+3¢33(=2¢33+ Caa+ €55) + 602344 (2033 4 Caa + C55)
+3(c33—caa)(c33(C23 +Cag) + (—C23 + €33 = 2¢44) C55) Co6)
+ 13 (=33 +3¢33(—2¢33 + cay +c55)

+6¢23¢44(—2¢33 + caa+ €55) 4 €33 (—Cas + €55+ 3c66)

+c34(4css +3c66) — c33¢aa(cas+2c5546¢46))),  (C-6)

1

3(ca3 — ca)’

+¢35633 = ¢33 + (3c35(can + 4ens)

+ €23(=6¢2 + €23)€33 + 2¢03¢33 +4es)cu

+ (2¢23 = ¢33)(Bexn + 83 + Se33)cy

+ (Bca + 8¢z + 5¢33)chy)- (C-7)

_ 4 2
Mayy = — (3c33 = 3cmersess

The number of independent stiffness parameters reduces to six
for acoustic orthorhombic media. The modified Alkhalifah’s nota-
tion (Appendix B) is adopted to describe the P-wave phase velocity.
Consequently, the coefficients C-2 and C-3 and coefficients C-5 to
C-7 become

my = 1/%,0, (C-8)
my = vhy(—1 + rycos® ¢ + ry sin’ ), (C-9)

1
m4xx:§l/]2;.0(1 —r2—3r%(1—§§)), (C-10)

1
Myyy = 3—§3D12’O(6r1r2§l§2 + (2 =1 = ry=6r11,)&3),
(C-11)

1
Mayy = 30po(1 =1 =3ri(1 = &)). (C-12)

The Taylor expansion along the horizontal direction

For the P-wave phase velocity in a vertical plane with the azimuth
@, we define its Taylor expansion as

13(0.9) = no(9) + na(9)(6 — m/2)%, (C-13)

where ny(¢p) corresponds to the squared magnitude of the phase
velocity defined in the [x, y] plane. Because all three symmetry
planes of an orthorhombic media exhibit transverse isotropy,
ng(@) is obtained by substituting the appropriate density-normal-
ized stiffness coefficients into the phase velocity formula of P-
waves in VTI media (Tsvankin, 1997):

1 .
no(p) = 5((511 + ¢46)c08? 4 (Cap + C6)sin* )

1
+§\/((611 — Ce6)€08% = (20 — Co6)5IN 9)* + (€12 + Ce6)* sin? (200).
(C-14)

The coefficient n,(¢) corresponds to the second-order derivative
of the squared phase velocity evaluated at @ = /2. This coefficient
can be determined with the aid of the implicit function theory. By
taking the second-order derivative of the polynomial equation (Ap-
pendix A in Tsvankin, 1997) for the phase velocity with respect to €
at /2, we find the expression for n,(¢):

na(g) = =21 +102(@)15(9) +x1 (@)1 (9) + 20 ()
: ((e11+ €o6)c08? @+ (€22 + cg6)sin* @ — 2ng) (¢55€08? ¢ + ¢4 5i0% 9 — 1 ()

(C-15)
with

Xo(@) = (cr1cascss —c13(c13+2¢s5)cep)cos’ @
+(€22€44€55 = C23(C3 +2¢44 )6 )sIN* 0
+(=ctsen—cnieas(ca+2c4)
+2cs5(c12(c23 +cas) + (€23 +2¢44)C66)
+2¢13(=cpess + (o3 cas) (12 +cg6)) Jc0s® psin® p,
(C-16)

21(9) = (¢ + 2¢13¢55 — 11 (caq + 55)
— css(caq + 2cg6))cost
+ (¢33 + 2¢a3¢44 — cxa(Cay + C55)
— cqa(css + 2¢6))sint
+ (cT3 + ¢33 + 2c23¢44 + 213655
—2(c11€44 + €55(C20 + Ca4)

+ ce6(cas + c55))cos g sint g, (C-17)

12(®) = cag + cs55+ ce6 + (c11 + 2¢55) c08% @
+ (2n + 2¢44) sin? . (C-18)
For an acoustic orthorhombic medium, coefficients ny(¢) and

ny (@) are written in the modified Alkhalifah’s notation (Appen-
dix B),
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1

no(p) = E”%o(rzfg cos? ¢ + (&7 sin® )

1 . 1 .
+ 51/12,0 \/(rch% cos? ¢+ r1E3sin® g)? + Z rir & sin? (2¢),
3

(C-19)

_ =21(9) + 12(@)n3(@) + 21(9)n0(9) + x0(9)
no (@) (2no(e) — V%o(’zf% cos? ¢ + ”15% sin @)’
(C-20)

()

with

1 .
20(@) = —riruy(26,&, — E1&; — E3&3)cos? g sin® g,

&
(C-21)
21(0) = vy (rycos® @ + ry sin® @), (C-22)
22(0) = V3 (r2&5 cos? @ + r1E2sin® @). (C-23)

APPENDIX D

TAYLOR EXPANSIONS OF THE INVERSE OF THE
EXACT P-WAVE GROUP VELOCITY SQUARED

In this appendix, we show the Taylor expansions of the inverse of
the group velocity squared of P-waves at vertical and horizontal
directions.

The Taylor expansion along the z-axis

Al-Dajani and Toksoz (2002) derive the P-wave moveout expan-
sion for a horizontal orthorhombic layer. From their result, we find
the fourth-order Taylor polynomial for the inverse of the group
velocity squared of P-waves with respect to the polar angle ® of
group propagation direction at the z-axis:

1

MZM0+M2(®)®2+M4(®)®4, (D-l)

where the series coefficients M;, i = 0,2,4 are given by

1
My=—, (D-2)
€33
1 _
My(P) = ——+ = C33 ~ €55 cos? @
€33 13+ 2c13¢55 + €33C55

€33 = Cy4
2
€23+ 2¢03¢40 + C33C4

sin @, (D-3)

(c13 4 c33)(c13 — €33 + 2¢s5)
3cas(cty 4 2¢13055 + c330s5)
— 2
(c3 +ZC33)(023 33+ 2C44) sint @
3c3(eqy + 2093¢44 + €33€44)
1/2 C33 — C
=l (e = e

2
3\e33 33+ 2003044 + C33¢4

My(D) = cos* @

_ (€33 = ¢55)
2
ci3 +2c13¢55 + €33C55

>cos2 &sin? @, (D-4)

For an acoustic orthorhombic medium, we adopt the modified
Alkhalifah’s notation (Appendix B) to represent coefficients D-2
to D-4. Consequently, these coefficients are reduced to

My =—, (D-5)
1 P T
My(®)=— | -1+ —cos? @+ —sin*® |, (D-6)

2
I/PO Iy r

1 (=1 -2
My (D) =—- <r2 costp— LT 272NT2 0 g in2 g
I‘/PO ry 37"11"2
~1
+ %snﬁ q5> . (D-7)
1

The Taylor expansion along the horizontal direction

The second-order Taylor expansion of the inverse of P-wave
group velocity squared along the horizontal direction is defined as

1
2(0.0) No(®) + No(D)(© — z/2)%+ ---, (D-8)

where the zero-order coefficient Ny(®) corresponds to the
inverse of the P-wave group velocity defined in [x, y] plane. Be-
cause the [x, y] plane, as a symmetry plane of an orthorhombic
medium, displays transverse isotropy, the P-wave GMA for 2D
VTI media (Stovas, 2010) is rewritten as the approximation for
Ny(®) by the appropriate substitution of density-normalized stiff-
ness coefficients,

No(@) = (1 —o(

cos?® sin? (D)
_|_

11 Aasg

2 — (D9

Ve cos4(15+2c0s2q§sin2(b+sin4<15
n c11bsr CSF

with
_ (¢}, +crices +2¢12¢66)*
2(c +4etyas €116 CEs 2011 C1a o6 (Can + Cap) Ty (s cr1 (€2 +Co6)))

(D-10)
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asf
4 3 > 3 ')
ex ety Hacty e H4ciiCacacosten (=cii+2em)cge+2cty (11 e +2¢5))

A 3 ) e (2c - . 2 (- . ’
a4ty et 022056 +2¢12C66(2011 €20 11 Cos =22 C6) HCTo (22 (2¢11 =€) +Co6(C11 +H4ces))

(D-11)

1 1

bsp (et + crices +2c12¢66)°
X (C?Z + 66?2C66 + 45%26%6(26'11 + o+ 2666)
+ chhees(2¢11 + c2p + 12¢46)

+ 1162686 (20266 + €11 (—2C20 + Co6))

+2¢11¢12¢66(2¢22C66 (€20 + Co6)
+ c11(=263, + ¢gg)) + ey (depcgs + ¢ (263, + cg)
+2¢11¢66(¢3y 4 a6+ 4¢))) (D-12)

CZZ(CIZ + Cri1Ce6 t+ 2C12€66)
¢ty + 2¢12¢66 + C22C66

CSE — (D-13)

For acoustic orthorhombic media, the stiffness coefficient ¢y, in
equation D-9, is expressed by, in the modified Alkhalifah notation
(Appendix B),

c1 = &3, (D-14)

and equations D-10 to D-13 become

1

(=2, (D-15)
2(1+&)

asp = csp = &1k, (D-16)
”15%”1%0

bgp = ——. D-17

SF =21 408 (D-17)

To determine the second-order coefficient N, (&) in equation D-
8, we consider the reflection traveltime of P-waves in a horizontal
orthorhombic layer with the fixed depth z. For the given acquisition
azimuth @, the asymptotic expansion of the two-way traveltime
squared at the infinite offset is assumed to behave as

~ 12+ pLh2, (D-18)

by analogy with the asymptotic expansion for a horizontal VTI layer
(Fomel and Stovas, 2010; Stovas, 2010). In equation D-18, A, de-
notes the source-receiver offset, 7, denotes the two-way traveltime,
t, denotes the intercept of the asymptotic traveltime, and p., =
\/No(®) denotes the group slowness of P-waves defined in the
[x, y] plane, where Ny(®) is given by equation D-9. According to
Stovas (2010), the asymptotic traveltime intercept ., is determined by

2 = lim (2 — p,t.h,), D-19
o gig[r}z(r prt.h,) (D-19)

where 6 denotes the polar angle of the phase propagation direction of
incident P-waves, measured from the z-axis; p, denotes the projection

of the slowness vector on the acquisition azimuth, corresponding to the
azimuth-dependent slope of the #,-h, curve.

To relate the traveltime ¢, to the group velocity vp, we take into
account the P-wave propagation distance given by

R=/h2+ (22 (D-20)

Dividing equation D-18 by the square of equation D-20 yields the
asymptotic expansion of the inverse of the group velocity squared as
the polar angle ® of group propagation direction approaches z/2:

———— ~ pcos? O + pZ sin? 0, D-21

where p., is explained after equation D-18; p, is defined as
p2 = 1% /(2z)?, which is obtained from equation D-19:

2
v

prtrhr)- (D'22)

1
p2 = hrn2(t% -

(22)%0

The second-order Taylor expansion of equation D-21 at ® = 7 /2 is

given by
7\ 2
2) ((-) - 5) . (D-23)

Matching equation D-8 with equation D-23 allows us to find the
second-order coefficient N,(®) defined in equation D-8:

1

2 2
= P —+ —_
FCR R (P2

QP
M@ =2 Ny D2y
€33
where Q(®) is given by
1 2
QD) = t2 11rr} (t2 = p,t,.h,). (D-25)

Here, ty = 2z/,/c33 denotes the zero-offset two-way traveltime,
and Q(®P) is approximately decomposed into the following two
terms:

,Q(Q)) = 'Qacoustic((p) + Qelastic(¢)’ (D'26)

where the term £2,..usic corresponds to the result of (@) for acous-
tic orthorhombic media; the term €2, denotes the perturbation of
Q(P) from acoustic to elastic orthorhombic media; the term 2,4
will vanish for acoustic orthorhombic media. The terms £2,.,usic and
Qa5 are derived in the next section of this appendix.

For acoustic orthorhombic media, the series coefficients Ny and
N,(®) given by equations D-9 and D-24 are reduced to

No() = 1428 (cos’® sin’®
(1480 \ n8 T &
1 ‘P 2Ppsin? @ in*®
‘ - cos2 2_2(1_2&)%5 s;n2 I 311122’
2(14+&3)vpg \| (283) onnéié (ré7)
(D-27)



Downloaded 04/18/16 to 129.241.68.199. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/

P-wave phase and group velocities ca3

N2 (@) — 'Qacousztic ((15)

— No(@). (D-28)
Upg

The derivation of Q defined in equation D-25

For simplicity, we first consider the case of acoustic orthorhom-
bic media. The modified Alkhalifah’s notation (equation B-1 and
equations B-7 to B-11) is adopted to parameterize such media.
The traveltime ¢, in equation D-25 is calculated by the following
equation:

t, = p1Xx + pay + 2psz, (D-29)
with
P
x=-2.203 (D-30)
op)
0
y= 2703 (D-31)
op,

where (x, y) denotes the source-receiver offset vector; z denotes the
thickness of the horizontal layer; (py, p,, p3) denotes the phase
slowness vector of incident P-waves; and the vertical slowness com-
ponent ps as a function of the horizontal slowness components p;
and p, is shown in equation B-13 with equations B-14 to B-16 of
Appendix B. From equations D-30 and D-31, we find the radial
source-receiver offset /4, given by

2 2
h =2z <%) + <%) : (D-32)
op op,

The slope p, = 0t,/0h, of the traveltime curve ¢,-h, for the acquis-
ition azimuth @ is equivalent to the projection of the slowness vec-
tor on the acquisition direction:

p, = p cos @+ p, sin @, (D-33)

where the sine and cosine of the acquisition azimuth @ are found
from equations D-30 to D-32 as

7] 0 2 d 2
cos @ = —ﬁ/ <ﬁ> + (ﬁ> (D-34)
op| op| op,

P a2 [9ps)\2
sind — —9P3 <ﬁ) +<ﬂ) , (D-35)
op; op, ops

From these operations, it follows that all quantities in the right
side of equation D-25 can be represented in terms of the horizontal
slowness components p; and p,. As the polar angle 0 of the phase
propagation direction from equation D-25 approaches z/2, the in-
cident and reflected rays will become the horizontal ray. This means
that £2 defined in equation D-25 is solely a function of the azimuth ¢

of the phase velocity in the [x, y] plane of an orthorhombic medium.
The approximate relationship between the azimuth ¢ of phase
propagation direction and the azimuth @ of group propagation di-
rection can be obtained for P-waves defined in the [x, y] plane of an
orthorhombic medium (Appendix E). Consequently, for acoustic
orthorhombic media, we derive the expression for £2,cousic (D),

K A
"~ VLO’ (VHMQu3yq + VLK)

'Qacoustic(@) (D-36)

where ,cousic(@) denotes the acoustic version of £ defined in
equation D-25; the quantity ¢ = g(®) denotes the phase slowness
squared of P-waves defined in the [x, y] plane in terms of the azi-
muth @ of group propagation direction, and the analytic expression
for ¢ = q(®) is given by equation E-6 of Appendix E; all quantities
except vpy on the right side of equation D-36 are functions of the
phase slowness squared ¢ and the phase azimuth ¢, and the analytic
representation of ¢ = ¢(@) is given by equation E-7 of Appendix E;
these quantities are shown in the modified Alkhalifah’s notation
(Appendix B) as follows:
The function K = K(q, ¢):

K =& + K & (v30q) + K283 (10q)? + K3E4 (130q)?
+ Ku&5(vpoq)* + Ks&(1509)° + Ko (1509)®,  (D-37)

with

K, =3(ry(1 = &) cos? ¢ +r(1 = &)sin @), (D-38)

K, = r38(2 = 58 + 3&))cos* ¢
+ 118 (2 — 587 + 3&})sin® ¢ + ryry (881 6,8, — 36183
+ E(4-98 - 98 4+ 9&2E2))cos? psin® g, (D-39)

Ky =-rg&(1 - )& cos® 9 — néi(1 - £1)°Fsin g
+111r3(2616,(5 = 783)& — &(7 - 985)&
= £1(2-38)(28 +3(1 = &)&3))cos* g sin®
— 1y (=26,6,(5 = T&1)& + 261(2 - 381)6
+ (683 + &1(7 = 1583) — 951(1 — £3))&3)cos g sin* g,
(D-40)

Ky =3rn (28166 - 88
— (& + 8 - &8)8)cos? psin’ ¢
X (REE(E — 1)cos* o + rIEE(EF — 1)sin® ¢
+ (2668 - 88 - 28 + 5)&
+ 361858 )cos” psin’ ), (D-41)
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Ks = —rir3(26, 686 - &85 — (G + & - §8)8)
X (r&5(4816:8 — 288
X +&1(1 =38 +3&(& — 1)))cos”
+ &1 (46168 — 268
+8(1 =38 + 36{(&5 - 1)))sin’p)cos* g sin @,
(D-42)
Ko=ririgig (-1
+E3)(2616:83 — 185 — (61 + & — £185)&3)* cos® psin® .
(D-43)
The function L = L(q, ¢):
L = r{(& + ravpgqéa (&) — &63)cos ) sin® 6
+ 13 (& + rivhyqé (& — £1&3)sin? @)t cos? 0. (D-44)

The function Q = Q(q, ¢):
0 =&+ 130q&(ry(1 = &)cos? @ + 11 (1 — &)sin® @)

+ 112 (Vpoq)* (2616283 — £183
— (& + & - 88)&)cos? g sin? ¢. (D-45)

The function H = H(q, ¢):
H = &(Ho + H,(v30q) + Ha(vpoq)* + H3(v30q)°
+ Hy(vhoq)). (D-46)
with
= G(r3cos’ @ + risin’ ), (D-47)

Hy = 4r11y&3(ré (&6 = &1&3)
+ ri& (€ — £&3))cos? g sin® g, (D-48)

Hy = 6rir5(5(& — &63)* cos’ @
+ (&, — £1&3)? sin? g)cos® psin g, (D-49)

Hy = 4rir3&(n& (&) — £&)3 cost ¢
+ & (& — &&)? sin* p)cos? psin® g, (D-50)

Hy = riry(r3& (&) = £63)" cos®
+ r3E} (&, — £1&)* sin® p)cos? psin? . (D-51)
The function M = M(q, ¢):

M = &(rycos? ¢ + ry sin’ )
+2r 1y qé;3(2E1E, — (6] + E3)&3)cos? g sin® ¢
+ rir(Vpgq)* (&3 (&) — £,63)% cos®
+ 11&1(& = £1&)* sin® g)cos® g sin” . (D-52)

The function A = A(q, ¢):

A = 2(v3q)*E (& (ry sin® ¢ + 1, cos? @)
+ rinavgeq (2816 — (& + &)&)sin® g cos® ¢)?
X (Ao&5 + Ayrira&ivieq + Aari 12 (vhq)?
+ Asrira(Vpoq) + Agri 1y (vpq)* + Asrins (vpoq)’
+ Agrir3 (v0q)°), (D-53)

with

Ay = —r3(15r) = ry&8)cos ¢ — ri(15r, — 11 &)sin’ @,
(D-54)

Ay = -RBeosS - RGsindp
+ 1 E3(15r1 8 + ra&y (&) + 65,83 — 6£,E3) )cos* psin? ¢

+ 181518 + 11 &y (&) + 681 &3 — 6£,83) )cos? gsin g,
(D-55)

Ay = 15r2§2§3 cos® 0+ 1573} ‘3‘sin8 @
+rr3(15618 + &163 + 206,58
— 60&3£5)cos® psin® ¢
+rir (15618 + 8363 + 20668
— 60£1E8)cos? psin® ¢
— rn& (& (& — 658 +46 &
+308,83 — 15¢,&3)
+ & (E — 68,8 + 46,85 + 3088
— 15&,&4))cos* psint @, (D-56)

A3 = 313882818 — 56 (1 +28))cos'0 0
+3rEE (268 — 561 (1 4 2&))sin'0 0
+ g (el + 1568 - 606,88
— 158 (1 — & — 6£%))cos® O sin” 0
+ringl (& + 1568 - 60668
—15&1E(1 — & — 6£%))cos? Osin® @
+r ”%(15’”2525% + r (15818 + 65?525%
- 881 +28)-65 581 + 385 - 10)
+ EE(1 + 38 4 6£3 — 20£5)))cos® O sin* 6
+ riry (151 88 + ry (1588 + 68,583
— & (1 +28)-6568(1 + 385 — 10£3)
+ EE(1 + 38 + 684 — 20£8)))cos* 9sinS 9,  (D-57)
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Ay = REE(E — 68,58 + 1582+ &))cos2 6
+ REE(8 - 65,68 + 1582+ &))sin'? 0
+ rirdE (& + 1588 - 308584 (1 +28)
+20&, 88 (1 + 38))cos!0sin? 0
+ ror{EH(E + 1588 - 30&{ (1 + 28)
+ 205,88 (1 + 383))cos? Osin'0 @
+ iR (& + 15618 + 661858 (2 + 38 - 108))
— (2 + 38 + 484 — 1585))cos® Osin* 0
+ iR (& + 1588 + 6668 (2 + 38 - 10&3)
— 882 4 38 + 48} — 1585))cos* O sin® 0
+ 3 (n (158 - 66,58 + 8852 + &)
+ & (1588 — 68,58 + EE5(2 + &3)))cos® Osin® 6,
(D-58)

As = 385 (&1 + 308183 — 6£16,83 — 206,58 (1 4+ &)
+1588(1 + & +&3))cos'00
+ r& (30818 + & — 66,5 — 205658 (1 + &)
+155G(1+ & +¢&3))sin'00
+ rR& (& + 156185 + 156185 — 66,58 (1 + & — 583)
+EE (1 + & + & — 6£5))cos® O sin? 0
+ i (& + 15618 + 15618 - 6868 (1 + & - 583)
+&E(1 + &+ & — 6£5))cos? Osin® 6
+ riraEE (28 + 15618 - & - 68164
+ 6£,85E3)cos® sin* 0 + 1232 E3 (285 + 15833
— &8 — 68,5583 + 6E8,£3)cos* Osin® 6, (D-59)

Ag = r3& (&5 + 156185 + 15618 — 686,83 — 2086)855¢;

= 651887 + 8383 )cos® 0 + ridd (8 + 158183 + 158153

= 66,858 — 206188 — 666,¢] + £16)sin® 0

+nREE(E + 1568 + 1588 + &

— 285,38 + &E)(& + 38)&;)cos® O sin® 0

+ & (&Y + 156183 + 156183 + &

— 28,538 + &E)(&3 + 383)&)cos? Osin® 0. (D-60)

Next, we derive the expression for £2 defined in equation D-26 for

elastic orthorhombic media by the perturbation method. An elastic
orthorhombic medium is taken into account as the perturbation from
the reference of the corresponding acoustic orthorhombic medium.
The S-wave velocity parameter v, defined in equation A-2 of Ap-
pendix A is taken as the perturbation parameter. For acoustic ortho-

rhombic media, 2 defined in equation D-26 is reduced to 2,.oustic>
which is given by equation D-36 with equations D-37 to D-60. For

the [x, z] and [y, z] planes of an orthorhombic medium, we derive
the perturbation term €2, corresponding to the change in density-
normalized stiffness coefficients from acoustic to elastic orthorhom-
bic media,

‘Qelastic (‘D - 0)

_ css(c11 = ca3)(e33 = ¢ss5)(cfy = criess + (e +2¢13 + e33)¢ss)
c33(ct; 4 2¢13655 + ca3css)?

(D-61)

Qelaslic((p = 77"/2)

_ cas(exn —c33) (€33 = cag) (33— cnez3 + (€0 +2¢03 + €33) Caa)
c33(€¢33 4 2¢03¢as + c33€0)°

(D-62)

The term 2,4 (P) in equation D-26 is assumed to satisfy an el-
liptic function defined as

Qelastic(d)) = 'Qelastic(¢ = 0)0052 )]
+ Qelaslic(q) = 777/2)Sin2 P. (D-63)

APPENDIX E

THE ANALYTIC APPROXIMATIONS FOR THE
PHASE SLOWNESS AND ITS PHASE ANGLE OF
P-WAVES IN THE HORIZONTAL PLANE OF
AN ORTHORHOMBIC MEDIUM

The goal of this appendix is to analytically express the squared
magnitude of phase slowness ¢ and the azimuth of the phase propa-
gation direction ¢ in terms of the azimuth of group propagation
direction @ for P-waves in the horizontal plane of an orthorhombic
medium.

For P-waves in the horizontal ([x, y]) plane of an orthorhombic
medium, the slowness vector (py, p,,0) is defined as

oT oT
==  m=— (B-1)
dy
Here, T denotes the traveltime from the coordinate origin (0,0, 0)
to the position (x, y,0),

Ve £y

r= vp(@)

@ = arctan(y/x), (E-2)

where the group velocity v, (®) is defined in the [x, y] plane, and its
analytic approximation is given by

vi(®) = 1/v/No(@). (E-3)

where No(®) denotes the approximate group slowness squared in
the [x, y] plane, given by equations D-9 to D-13 of Appendix D for
elastic orthorhombic media and equation D-27 of Appendix D for
acoustic orthorhombic media.
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Substitution of the traveltime formula E-2 into the definition of
slowness vector E-1 yields

pi(®) = 2’? q)q; ; A (B)Y(®) sin @,
. (E-4)
p2(@) = ZIE;; ;I/h(@)Y(cb) cos D,

with

0D C11dsF
é/(ch(bSF - C“)C052¢+ Cl1 (C%F —C“bsp)sil’l2 ¢) Sm(2¢>)

2 2 [eos*® | 2cos’@sin’® | sin' @
CUbSFCSF\/ ) + ciibsg + 2

Y(®) :6(1/1/,21) (c11—asg)(1=¢)sin(29)

’

(E-5)

where {, agg, bsg, and cgp are given by equations D-10 to D-13 of
Appendix D for elastic orthorhombic media and equations D-15 to
D-17 of Appendix D for acoustic orthorhombic media; c;; is ex-
pressed by equation D-14 of Appendix D for acoustic orthorhombic
media.

The squared magnitude of the slowness vector ¢ = p? + p3 can
thus be written as

1 1
q(®) = 5+ - 1;(P) (D), (B-6)

corresponding to the phase azimuth ¢ as a function of the group
azimuth @, given as

V2 (®)Y(D)
T) . (E-7)

@ = @D—i—arctan( h
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