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ABSTRACT

We have developed an analytic and approximate formula
for vertical slowness components of down- and upgoing
plane P waves in 3D tilted orthorhombic media. A pertur-
bation method and Shanks transform were used to derive
the approximation for slowness surface of P waves in tilted
orthorhombic media. We have also quantitatively described
the validity range of the radial horizontal slowness compo-
nents for the proposed formula. The validity range was af-
fected by the strength of the anellipticity of an orthorhombic
medium: the stronger the anellipticity, the smaller the valid-
ity range. Numerical examples determined that the proposed
formula is accurate for tilted orthorhombic media with weak
to strong anellipticity. We have also evaluated in detail the
application of the proposed formula on calculating the P-
wave intercept time in the τ-p domain for horizontally lay-
ered, tilted orthorhombic models. Our formula is useful for
ray tracing, phase-shift migration, and τ-p domain intercept
time approximation for tilted orthorhombic media.

INTRODUCTION

Orthorhombic anisotropy is a common phenomenon of seismic
wave propagation in sedimentary basins with parallel vertical frac-
tures or isotropic media with two orthogonal sets of vertical fractures
(Schoenberg and Helbig, 1997; Bakulin et al., 2000). An orthorhom-
bic medium is characterized by three mutually orthogonal planes
of mirror symmetry (Tsvankin, 1997). In each symmetry plane, the
medium behaves in a transversely isotropic manner. Such media are
generally described in Thomsen-type notation including nine inde-
pendent parameters (Tsvankin, 1997). However, it is difficult to invert
for all nine parameters from surface P-wave data provided only using
traveltime. The main reason is that some parameters in Thomsen-type
notation, related to S-waves, almost do not affect P-wave phase and

group velocities. A common way of describing the P-wave slowness
surface in orthorhombic media is using Alkhalifah’s (2003) notation.
In this notation, there remain six independent nonzero parameters and
the S-wave velocities along the three symmetry axes are assumed to
be zeros. Because the six parameters are linked to the parameters in
Thomsen-type notation, the P-wave slowness surface under acoustic
approximation can also be described by the six parameters in Thom-
sen-type notation without shear parameters γ1 and γ2. Besides, one
can also use the weak anisotropy notation (e.g., Psencik and Farra,
2005) to describe the P-wave velocities and traveltimes for ortho-
rhombic media.
Analytic representation of the vertical slowness component of

plane P waves is useful for ray tracing, phase shift migration, and
τ-p domain intercept time approximation for anisotropic media.
For body-wave ray tracing in a multilayered anisotropic medium,
Snell’s law must be taken into account to calculate the slowness
components of reflected and transmitted waves, normal to the local
interface (e.g., Červený [2001], pp. 42–44; Vanelle and Gajewski,
2009). For prestack phase-shift migration, the phase-shift operator
is connected with the vertical slowness components of downgoing
and upgoing plane waves (e.g., Gazdag, 1978; Yilmaz [2001],
pp. 498–500). For horizontally layered media, the intercept time
in τ-p domain can be expressed by the summation over the product
of layer thickness and absolute magnitudes of vertical slowness com-
ponents of downgoing and upgoing plane waves (e.g., van der Baan
and Kendall, 2002, 2003; Sen and Mukherjee, 2003; van der Baan,
2004; Sil and Sen, 2008, 2009).
For orthorhombic media with a vertical symmetry axis, it is not

difficult to analytically calculate the vertical slowness component of
plane P waves from the slowness surface equation (Alkhalifah,
2003). For general 3D tilted orthorhombic media, however, it is
impossible to obtain the exact and analytic formula for the vertical
slowness component of plane P waves. Perturbation method can
help to obtain the analytic approximation for the vertical slowness
component. Vanelle and Gajewski (2009) develop an approxima-
tion of the vertical slowness component for weakly anisotropic me-
dia. Stovas and Alkhalifah (2013) use a perturbation method and
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Shanks transform (Bender and Orszag [1978], pp. 369–375) to de-
rive an analytic formula for the vertical slowness component of
plane P waves in 2D tilted transversely isotropic media. For vertical
transversely isotropic media, accurate rational approximations for
vertical slowness component of plane P- and SV-waves are presented
in Schoenberg and de Hoop (2000) and Pedersen et al. (2007).
The goal of this paper is to derive an analytic formula for the

vertical slowness component of down-and upgoing plane P waves
in tilted orthorhombic media. A titled orthorhombic medium in the
frame of global Cartesian reference corresponds to the orthorhom-
bic medium with three symmetry planes orthogonal to the local axes
in the frame of local Cartesian reference. For simplicity, the two
orthorhombic media are referred to as the tilted orthorhombic medi-
um and the vertical orthorhombic medium throughout this paper.
We account for the orthorhombic media under an acoustic assump-
tion (Alkhalifah, 2003). To extend the approach proposed by Stovas
and Alkhalifah (2013) to 3D orthorhombic media, we modify
Alkhalifah’s (2003) notation by replacing the parameter δ3 in his
notation by a new anellipticity parameter. Three anellipticity param-
eters defined in symmetry planes of an orthorhombic medium are
involved in the notation after modification. This is very helpful for
deriving our analytic formula, because the P-wave slowness surface
in orthorhombic media is an ellipsoid when all three anellipticity
parameters are zeros and the expression for the vertical slowness
component is extremely straightforward in this case. We use a per-
turbation method to approximate the vertical slowness component
of plane P waves. We take elliptically orthorhombic media as a
background and three anellipticity parameters as perturbation pa-
rameters. The perturbation of the vertical slowness component with
respect to three anellipticity parameters is determined from the
slowness surface equation. Shanks transform (Bender and Orszag
[1978], pp. 369–375) can accelerate the convergence of series like
our perturbation expansion. Therefore, we apply the Shanks trans-
form (Bender and Orszag [1978], pp. 369–375) to improve the ac-
curacy of our perturbation expansion. The whole process of
deriving vertical slowness component is straightforward. In the
main text, the sign of vertical slowness component is assumed to
be positive for downgoing plane P waves and negative for upgoing
plane P waves.

PARAMETERIZATION FOR ORTHORHOMBIC
MEDIA

Wemodify Alkhalifah’s (2003) notation and define the following
parameters to parameterize an acoustic orthorhombic medium with
three symmetry planes orthogonal to the three axes of Cartesian co-
ordinate system:

υp0 ≡
ffiffiffiffiffiffiffi
a33

p
; (1)

η1 ≡
ε1 − δ1
1þ 2δ1

¼ a22ða33 − a44Þ
2ða223 þ a23a44 þ a33a44Þ

−
1

2
; (2)

η2 ≡
ε2 − δ2
1þ 2δ2

¼ a11ða33 − a55Þ
2ða213 þ a13a55 þ a33a55Þ

−
1

2
; (3)

η3≡
ε1− ε2−δ3ð1þ2ε2Þ
ð1þ2ε2Þð1þ2δ3Þ

¼ a22ða11−a66Þ
2ða212þ2a12a66þa11a66Þ

−
1

2
;

(4)

r1 ≡ 1þ 2δ1 ¼
ða23 þ a44Þ2
a33ða33 − a44Þ

þ a44
a33

; (5)

r2 ≡ 1þ 2δ2 ¼
ða13 þ a55Þ2
a33ða33 − a55Þ

þ a55
a33

; (6)

where aij denote the density-normalized stiffness coefficients in
Voigt notation; υp0 denotes the phase velocity of P waves along
the vertical axis (z-axis); subscripts 1, 2, 3 except for aij correspond
to the [y, z], [x, z], and [x, y] symmetry planes of an orthorhombic
medium, respectively; εi ði ¼ 1;2Þ and δi ði ¼ 1;2; 3Þ are Thomsen-
type parameters for orthorhombic media (Tsvankin, 1997); ηi ði ¼
1;2; 3Þ denote the anellipticity parameters (Grechka and Tsvankin,
1999); and ri ði ¼ 1;2Þ denote the factors for the NMO velocities
squared.

EXACT SLOWNESS SURFACE

The slowness surface for tilted orthorhombic media can be ob-
tained by rotating the slowness surface for vertical orthorhombic
media. Let us define pv ¼ ðpv1; pv2; qvÞT and p ¼ ðp1; p2; qÞT as
the slowness vectors of P waves in vertical and tilted orthorhombic
media, respectively. Considering the notation in the previous sec-
tion, the P-wave slowness surface for acoustic orthorhombic media
with the three symmetry planes orthogonal to the three axes of the
local Cartesian coordinate system (Alkhalifah, 2003) is written as

Fðpv1; pv2; qvÞ ¼ υ2p0q
2
vf2ðpv1; pv2Þ − f1ðpv1; pv2Þ ¼ 0;

(7)

where functions f1ðpv1; pv2Þ and f2ðpv1; pv2Þ are given by

f1ðpv1; pv2Þ ¼ ð1 − r1ξ21p
2
v2υ

2
p0Þð1 − r2ξ22p

2
v1υ

2
p0Þ

−
1

ξ23
r1r2ξ21ξ

2
2p

2
v1p

2
v2υ

4
p0; (8)

f2ðpv1; pv2Þ ¼ 1þ r1ð1 − ξ21Þp2
v2υ

2
p0 þ r2ð1 − ξ22Þp2

v1υ
2
p0

− r1r2Ωp2
v1p

2
v2υ

4
p0; (9)

with

Ω ¼ ξ21 þ ξ22 − ξ21ξ
2
2 þ

ξ21ξ
2
2

ξ23
−
2ξ1ξ2
ξ3

; (10)

ξ1 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2η1

p
; ξ2 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2η2

p
; ξ3 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2η3

p
: (11)

The P-wave slowness surface for a tilted orthorhombic medium is
linked to the corresponding slowness surface for the vertical ortho-
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rhombic medium through three successive rotations (e.g., Zhang
and Zhang, 2011; Lapilli and Fowler, 2013). These rotations are
expressed in matrix forms

Ra¼

0
B@

cosϕ sinϕ 0

−sinϕ cosϕ 0

0 0 1

1
CA; Rb¼

0
B@
cos θ 0 −sin θ

0 1 0

sin θ 0 cos θ

1
CA;

Rc¼

0
B@

cosψ sinψ 0

−sinψ cosψ 0

0 0 1

1
CA; (12)

where the definition of Euler angles ϕ, θ, and ψ is shown in Figure 1.
Applying these rotations to the slowness surface for tilted ortho-
rhombic media, one can obtain the slowness surface for the vertical
orthorhombic media

pv ¼ RcRbRap; (13)

where pv ¼ ðpv1; pv2; qvÞT and p ¼ ðp1; p2; qÞT denote the slow-
ness vectors in the orthorhombic medium with the three symmetry
planes orthogonal to the three axes of the local Cartesian coordinate
system and the tilted orthorhombic medium, respectively.
The radial horizontal slowness pr and its azimuth φ measured

from the x-axis are introduced to express the horizontal slowness
components for tilted orthorhombic media

p1 ¼ pr cos φ; p2 ¼ pr sin φ: (14)

Substituting equation 13 with equations 12 and 14 into equation 7
with equations 8–11, we can obtain a sixth-order polynomial equa-
tion in the vertical slowness component q, which is symbolically
denoted by

Gðq; pr;φÞ ¼ 0: (15)

The sixth-order polynomial equation generally has no exact and
analytic solution. Assuming that the given pr is in the range of the
radial horizontal slowness components of P waves, we can always
numerically obtain a pair of real roots from equation 15, of which
the positive and negative roots correspond to the down- and upgoing
P waves, respectively. However, we cannot guarantee that all other
roots are always complex-valued. For acoustic transversely iso-
tropic media with a vertical symmetry axis, for instance, the phase
velocity of pseudo S-waves may be real-valued (Grechka et al.,
2004). To identify the correct root of the considered P-wave, we
can use the following procedure: (1) for a given horizontal slowness
pr, we calculate all six roots from equation 15, and we obtain the
corresponding phase velocities; (2) we remain all real roots and ne-
glect the complex-valued roots; (3) for each real root, we calculate
the phase propagation direction; (4) we substitute the phase propa-
gation direction to the exact formula for the P-wave phase velocity
(e.g., Schoenberg and Helbig, 1997), to obtain the phase-velocity
corresponding to this direction; and (5) if the phase velocities ob-
tained in steps (1) and (4) are the same, we conclude that the root
corresponds to a P-wave and determine the up- or down-propaga-
tion direction from the sign of this root; otherwise, we will neglect it
and start with step (3) to check one other real root. It is worth noting

that we can also use this procedure to identify the vertical slowness
component of up- and downgoing P waves in elastic orthorhombic
media with tilted symmetry axes.

VERTICAL SLOWNESS APPROXIMATION

In this section, we use a perturbation method and Shanks trans-
form to find an approximate solution of equation 15. For a fixed pair

Figure 1. Schematic plots for the three independent coordinate ro-
tations (after Lapilli and Fowler, 2013). The plots from left to right
correspond to the rotations around the z-, y 0-, and z 0 0-axes, respec-
tively. The (x, y, z) denotes the original Cartesian system correspond-
ing to the slowness surface of P waves in tilted orthorhombic media.
(x 0, y 0, z 0) and (x 0 0, y 0 0, z 0 0) denote the Cartesian systems after first
and second rotations around the z-axis and the y 0-axis, respectively.
(x 0 0 0, y 0 0 0, z 0 0 0) denotes the final Cartesian system after the rotation
around the z 0 0-axis. The x 0 0 0-, y 0 0 0-, and z 0 0 0-axes are also three prin-
ciple axes of orthorhombic media. In equation 13, slowness vectors p
and pv are defined in the coordinate systems (x, y, z) and (x 0 0 0, y 0 0 0,
z 0 0 0), respectively.
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of the radial horizontal slowness pr and its azimuth φ, we define the
trial solution for the vertical slowness component with respect to the
anellipticity parameters ηi, i ¼ 1;2; 3

q ¼ q0 þ
X3
i¼1

qiηi þ
X3

i;j¼1;i≤j
qijηiηj: (16)

The anellipticity parameters ηi, i ¼ 1;2; 3, are involved in the
slowness surface equation 15. The similar expansion of equation 15
is written as

GðqÞ¼G0ðqÞþ
X3
i¼1

GiðqÞηiþ
X3

i;j¼1;i≤j
GijðqÞηiηj ¼ 0: (17)

Here, the arguments pr and φ in functions G, G0, Gi, and Gij are
omitted for simplicity.
Equation 17 is a six-order polynomial equation in the unknown

vertical slowness component q. By substituting the trial solution 16
into equation 17, we can obtain a new expansion with respect to the
anellipticity parameters

GðqÞ ¼ H0ðq0Þ þ
X3
i¼1

Hiðq0; qiÞηi

þ
X3

i;j¼1;i≤j
Hijðq0; q1; q2; q3; qijÞηiηj ¼ 0; (18)

where Hi and Hij are the polynomial functions.
From equation 18, we obtain

H0ðq0Þ ¼ 0; Hiðq0; qiÞ ¼ 0;

Hijðq0; q1; q2; q3; qijÞ ¼ 0; i; j ¼ 1;2; 3; and i ≤ j . (19)

Solving equation 19 successively, we determine all perturbation
coefficients defined in the trial solution 16. Furthermore, we find
that the trial solution 16 can be written as

qð�Þðpr;φÞ ¼
1

υp0

�
~qð�Þ
0 ðpr;φÞ þ

X3
i¼1

~qð�Þ
i ðpr;φÞηi

þ
X3

i;j¼1;i≤j
~qð�Þ
ij ðpr;φÞηiηj

�
; (20)

where ~qð�Þ
0 , ~qð�Þ

i , and ~qð�Þ
ij are zero-, first-, and second-order dimen-

sionless coefficients, which are the functions of pr and φ; superscripts
“+” and “−” correspond to the upper and lower parts of a slowness
surface, that is, qðþÞ > qð−Þ for each fixed pair of pr and φ; the ex-
pressions for these coefficients are shown in Appendix A; for ellip-
tically orthorhombic media ðη1 ¼ η2 ¼ η3 ¼ 0Þ, the first- and

second-order coefficients ~qð�Þ
i and ~qð�Þ

ij in equation 20 vanish.
We apply the Shanks transform (Bender and Orszag [1978],

pp. 369–375) to accelerate the convergence of expansion 20. Con-
sequently, the final formula for the vertical slowness component
becomes

qð�Þðpr;φÞ¼
1

υp0

�
Qð�Þ

0 ðpr;φÞþ
ðQð�Þ

1 ðpr;φÞÞ2

Qð�Þ
1 ðpr;φÞ−Qð�Þ

2 ðpr;φÞ

�
;

(21)

with

Qð�Þ
0 ðpr;φÞ¼ ~qð�Þ

0 ðpr;φÞ; Qð�Þ
1 ðpr;φÞ¼

X3
i¼1

~qð�Þ
i ðpr;φÞηi;

Qð�Þ
2 ðpr;φÞ¼

X3
i;j¼1;i≤j

~qð�Þ
ij ðpr;φÞηiηj: (22)

This formula is valid for a general 3D tilted orthorhombic media.
In this formula, the three anellipticity parameters control the accu-
racy of approximation. According to the definitions 2–4 for the
three anellipticity parameters, the anellipticity parameters η1 and η2
control the accuracy of approximation in the two symmetry planes
of a tilted orthorhombic medium, which correspond to the [y, z] and
[x, z] planes for the orthorhombic media before rotation; the anel-
lipticity parameter η3 controls the accuracy of approximation be-
tween the two symmetry planes of the tilted orthorhombic media.
This formula has the following properties:

qð�Þðpr;φÞ ¼ qð�Þð−pr; π þ φÞ; (23)

qð�Þðpr;φÞ ¼ −qð∓Þð−pr;φÞ: (24)

In equation 23, ðpr;φÞ and ð−pr; π þ φÞ correspond to the same
horizontal slowness components in Cartesian coordinates. Equa-
tion 24 implies that the upper and lower parts of slowness surface
are antisymmetric with respect to the origin of slowness coordi-
nate system. Equations 23 and 24 can be verified by considering
equations 21 and 22, as well as the perturbation coefficients in
Appendix A.
For 3D elliptically orthorhombic media ðη1 ¼ η2 ¼ η3 ¼ 0Þ, the

first- and second-order coefficients vanish, that is, Qð�Þ
1 ¼ Qð�Þ

2 ¼
0. Thus, approximation 21 becomes the exact formula

qð�Þðpr;φÞ ¼
AðφÞ ~pr �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ðφÞ − BðφÞ ~p2

r

p
υp0v

2ðφÞ ; (25)

where ~pr ¼ υp0pr denotes the radial horizontal slowness component
normalized by the velocity υp0; functions AðφÞ, BðφÞ, and vðφÞ are
given by equations A-2 to A-6 in Appendix A. This implies that the
proposed formula 21 is accurate when the three anellipticity param-
eters are very small.
For a 2D TTI media, the anisotropy parameters defined in equa-

tions 2–6 become r1 ¼ r2, η1 ¼ η2, and η3 ¼ 0. By further setting
ϕ ¼ φ ¼ 0, the slowness rotation 13 becomes equation 2 in Stovas
and Alkhalifah (2013). Furthermore, the proposed approximation is
reduced to the one for 2D TTI media (Stovas and Alkhalifah, 2013).
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DOWN- AND UPGOING PLANE WAVES FOR
TILTED ELLIPTICALLY ORTHORHOMBIC

MEDIA

For a tilted orthorhombic medium, the upper and lower parts of
slowness surface do not exactly correspond to the downgoing and
upgoing waves. Figure 2 shows an example of the slowness surface
for a tilted elliptically orthorhombic medium. We can see that the
upper and lower parts of the slowness surface intersect the axis
q ¼ 0. All plots in this figure are produced by using formula 25 for
elliptically orthorhombic media with tilted symmetry axes. Let us
now determine the range of horizontal slowness components of
down- and upgoing plane P waves in tilted elliptically orthorhombic
media. Figure 3 shows a schematic plot of the slowness surface
composed of down- and upgoing plane waves with a fixed propa-
gation azimuth. For a fixed propagation azimuth φ, the dipping di-
rection of slowness surface is controlled by the sign of AðφÞ. For
tilted orthorhombic media, down- and upgoing plane waves consist
of a part of the upper slowness surface and a part of the lower
slowness surface. In Figure 3, points M and N correspond to
the boundary points of horizontal slowness component for the upper
and lower parts of the slowness surface. Points M and N are anti-
symmetric with respect to the origin of slowness coordinate system.
Points P and Q are located on the horizontal slowness axis and cor-
respond to the slowness of the horizontally propagating plane
waves. Points P and Q are symmetric with respect to the vertical
slowness axis. For a fixed propagation azimuth, it is not difficult to

determine the slowness at pointsM, N, P, and Q from equation 25:
for points M and N, we define pcðφÞ and qcðφÞ as the magnitudes
of the radial horizontal and vertical slowness components

pcðφÞ ≡
vðφÞ

υp0
ffiffiffiffiffiffiffiffiffiffi
BðφÞp ; qcðφÞ ≡

jAðφÞj
υp0 vðφÞ

ffiffiffiffiffiffiffiffiffiffi
BðφÞp : (26)

For points P and Q, we define p0ðφÞ as the magnitude of their
slownesses

p0ðφÞ ≡
vðφÞ

υp0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2ðφÞ þ BðφÞ

p : (27)

In equations 26 and 27, expressions for AðφÞ, BðφÞ, and vðφÞ are
given by equations A-2 to A-7 in Appendix A.
Using these definitions, the vertical slowness component of

downgoing plane P waves, qðDÞðpr;φÞ, is determined by the follow-
ing conditions:
If AðφÞ > 0,

qðDÞðpr;φÞ¼
�
qðþÞðpr;φÞÞ; for pr ∈ ð−p0ðφÞ;pcðφÞÞ
qð−Þðpr;φÞÞ; for pr ∈ ðp0ðφÞ;pcðφÞÞ ;

(28)

Figure 2. The slowness surface of P waves in an elliptically orthorhombic medium. Solid black lines are produced using equation 25 with plus
sign in front of the square root. Dashed gray lines correspond to equation 25 with minus sign in front of the square root. From the top left to the
bottom right, plots correspond to the azimuths of P-wave phase propagation direction (a) φ ¼ 0, (b) φ ¼ π∕6, (c) φ ¼ π∕3, (d) φ ¼ π∕2,
(e) φ ¼ 2π∕3, and (f) φ ¼ 5π∕6, respectively. The medium parameters include υp0 ¼ 3.0 km∕s, r1 ¼ 1.2 and r2 ¼ 1.3, η1 ¼ η2 ¼ η3 ¼ 0,
θ ¼ π∕4, ϕ ¼ π∕6, and ψ ¼ 0.
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else if AðφÞ < 0,

qðDÞðpr;φÞ ¼
�
qðþÞðpr;φÞÞ; for pr ∈ ð−pcðφÞ;p0ðφÞÞ
qð−Þðpr;φÞÞ; for pr ∈ ð−pcðφÞ;−p0ðφÞÞ

;

(29)

else if AðφÞ ¼ 0,

qðDÞðpr;φÞ ¼ qðþÞðpr;φÞ; for pr ∈ ð−p0ðφÞ; p0ðφÞÞ:
(30)

Similarly, the vertical slowness component of upgoing plane
waves, qUðpr;φÞ is determined by
If AðφÞ > 0,

qðUÞðpr;φÞ ¼
�
qð−Þðpr;φÞÞ; for pr ∈ ð−pcðφÞ;p0ðφÞÞ
qðþÞðpr;φÞÞ; for pr ∈ ð−pcðφÞ;−p0ðφÞÞ

;

(31)

else if AðφÞ < 0,

qðUÞðpr;φÞ ¼
�
qð−Þðpr;φÞÞ; for pr ∈ ð−p0ðφÞ; pcðφÞÞ
qðþÞðpr;φÞÞ; for pr ∈ ðp0ðφÞ; pcðφÞÞ ;

(32)

else if AðφÞ ¼ 0,

qðUÞðpr;φÞ ¼ qð−Þðpr;φÞ; for pr ∈ ð−p0ðφÞ; p0ðφÞÞ:
(33)

The conditions presented above are strictly exact for elliptically
orthorhombic media. Because the proposed formula in the previous
section is based on the perturbation of media from a tilted ellipti-
cally orthorhombic background, we can use the conditions to cal-

culate the vertical slowness components of down- and upgoing
plane waves for general tilted orthorhombic media. However, the
examples in section “Numerical results” will show that the condi-
tions are not strictly suitable for general tilted orthorhombic media.
For instance, Figure 4 shows the nearly vertical dashed lines, which
correspond to the extremely large error in vertical slowness. We call
it the “jumping” phenomenon throughout this paper for simplicity.

VALIDITY REGION FOR TILTED
ORTHORHOMBIC MEDIA

To overcome the jumping phenomenon mentioned above, we
present a validity range of the radial horizontal slowness for for-
mula 21. The multivalued range of vertical slowness component for
tilted elliptically orthorhombic media is excluded from the validity
range because the “Numerical results” section will show the multi-
valued region causes the significantly error in the vertical slowness
component for formula 21.
For a fixed propagation azimuth φ, the two intersections of the

exact slowness surface with the horizontal plane q ¼ 0, are defined
as the boundary of the validity range of the horizontal slowness
components of down- and upgoing plane waves. Finally, the vertical
slowness components of down- and upgoing plane waves are given
by as follows,
for downgoing plane waves,

qðDÞðpr;φÞ ¼ qðþÞðpr;φÞÞ; for pr ∈ ð−peðφÞ; peðφÞÞ;
(34)

for upgoing plane waves,

qðUÞðpr;φÞ ¼ qð−Þðpr;φÞÞ; for pr ∈ ð−peðφÞ; peðφÞÞ;
(35)

where peðφÞ denotes the intersection of the exact slowness surface
with the horizontal slowness plane q ¼ 0, identical to the magnitude
of the slowness of the horizontally propagating plane P waves, and
its expression is derived in Appendix B; qðþÞ and qð−Þ denote the

upper and lower parts of the slowness surface,
given in equation 21 with 22.
Although not strictly proven, our experience

shows the validity range given in equations 34
and 35 is fully located inside of the range of the
radial horizontal slowness components for gen-
eral tilted orthorhombic media. We can also ex-
press this relation by the following equation:

ð−peðφÞ; peðφÞÞ ⊂ ð−pcðφÞ; pcðφÞÞ;
(36)

where the meaning of peðφÞ is explained after
equation 35; the definition of pcðφÞ is given by
the first of equation 26.

NUMERICAL RESULTS

In this section, we study the validity of the
proposed formula by comparing with the exact

Figure 3. The schematic plots of slowness surface composed of downgoing (solid line)
and upgoing (dashed line) plane P waves with propagation azimuth φ in tilted elliptically
orthorhombic media. The left and right plots correspond to the cases AðφÞ > 0 and
AðφÞ < 0, respectively. Points M and N are the boundary points of the upper (or lower)
part of the slowness surface for a fixed φ, which means that the tangents at pointsM and
N are parallel to the vertical slowness axis q. Points P and Q are the intersections of the
slowness surface with q ¼ 0 for a fixed φ.
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solution that is obtained by mapping the corresponding phase veloc-
ity on the slowness surface. The exact phase-velocity of plane P
waves is shown in Tsvankin (1997) for elastic orthorhombic media.
For acoustic orthorhombic media in this paper, the phase velocity
can also be calculated in his procedure by considering the relation-
ships 1–6 between stiffness coefficients and the parameters in the
modified Alkhalifah’s (2003) notation. To check the influence of
anellipticity on the accuracy of the proposed formula, we use two
tilted orthorhombic models with same parameters υp0 ¼ 3.0 km∕s,
r1 ¼ 1.2 and r2 ¼ 1.3, θ ¼ π∕4, ϕ ¼ π∕6, and ψ ¼ 0, but different
anellipticities ηi, i ¼ 1; 2; 3. The anellipticity parameters for the first
model are η1 ¼ 0.2, η2 ¼ 0.1, and η3 ¼ 0.3; for the second
model η1 ¼ η2 ¼ η3 ¼ 0.3.
Let us now analyze the error of formula 21. The conditions in

equations 28–33 are accounted for the range of the radial horizontal
slowness of down- and upgoing plane waves. For the first model
with relatively weak anellipticity, Figures 4 and 5 show the vertical
slowness curves of down- and upgoing plane P waves, respectively.
We can see that the results from formula 21 match very well with
the exact ones when the propagation direction is far away from the
horizontal direction. The jumping phenomenon of the vertical slow-
ness curves happens due to two reasons: One is when the propaga-
tion direction of plane P waves is close to the point of tangency
ðpc; qcÞ; the other possible reason is that when the denominator in
equation 21 is so small that the error of Shanks transformation is
amplified. Figures 6 and 7 show results for the second orthorhombic
model with relatively strong anellipticity. Similar to for the previous
model, the jumping phenomenon still exists. Compared with Fig-
ures 4 and 5, Figures 6 and 7 show the validity range of propagation
angle becomes narrowed for the orthorhombic medium with rela-
tively strong anellipticity. The decrease in validity range of the
propagation angles is due to the increase in anellipticity, because the
proposed formula is derived from the vertical slowness expansion
in terms of the three anellipticity parameters. This proves that the
three anellipticity parameters control the accuracy of the proposed
formula.

To exclude the jumping phenomenon mentioned above, let us
now consider the validity range of the radial horizontal slowness
components given in equations 34 and 35 for downgoing and up-
going plane waves when using the proposed formula. To measure
the validity range of the propagation angles, we define the polar
angle ϑ as an acute angle of the phase-propagation direction of
plane P waves and the z-axis of the tilted orthorhombic medium.
Figures 8 and 9 correspond to Figures 4 and 5, respectively, for
the first orthorhombic model with relatively weak anellipticity.
The only difference is that for Figures 8 and 9, we consider the
validity range given in equations 34 and 35 to calculate the vertical
slowness components of downgoing and upgoing plane waves. We
can see that the validity range of the propagation angles ϑ is azi-
muthal dependent. Considering all azimuths shown in Figures 4
and 5, the average validity range of polar angle is approximately
ϑ ∈ ð−70°; 70°Þ. In the validity range, the proposed formula is very
close to the exact solution; the jumping phenomenon disappears
because the slowness outside the validity range is not considered.
Similar results are shown in Figures 10 and 11 for the second ortho-
rhombic model with relatively strong anellipticity. For all propaga-
tion azimuths, we coarsely measure the average validity range of
polar angles, ϑ ∈ ð−67°; 67°Þ, within which formula 21 is valid for
all propagation azimuth. When the polar angle ϑ is outside the val-
idity region, ϑ ∈= ð−67°; 67°Þ, the proposed formula is less accurate.
Comparing the validity ranges of polar angles for the first and sec-
ond orthorhombic models, we can find that the magnitude of anel-
lipticity affects the validity ranges of polar angles: The stronger the
anellipticity of the orthorhombic medium, the smaller the validity
range of polar angles. However, it is difficult to describe how the
three anellipticity parameters affect the range of polar angles, be-
cause the three Euler angles for a tilted orthorhombic medium are
also included in our approximation for the vertical slowness com-
ponent. Comparing Figures 10 and 11 with Figures 8 and 9, we can
see that the influence of anellipticity on the accuracy of the pro-
posed approximation is nor pronounced in the validity range. There-
fore, the proposed formula applies for tilted orthorhombic media

Figure 4. The vertical slowness component of downgoing plane P waves versus the horizontal slowness along different azimuths of phase
propagation direction in an orthorhombic medium. Solid gray lines correspond to the exact solution, and dashed black lines correspond to the
proposed formula. From the top left to the bottom right, plots correspond to the azimuths of plane P-wave phase propagation direction
(a) φ ¼ 0, (b) φ ¼ π∕6, (c) φ ¼ π∕3, (d) φ ¼ π∕2, (e) φ ¼ 2π∕3, and (f) φ ¼ 5π∕6, respectively. The medium parameters include
υp0 ¼ 3.0 km∕s, r1 ¼ 1.2 and r2 ¼ 1.3, η1 ¼ 0.2, η2 ¼ 0.1, η3 ¼ 0.3, θ ¼ π∕4, ϕ ¼ π∕6, and ψ ¼ 0.
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Figure 5. Similar to Figure 4, but for upgoing P waves.

Figure 6. Similar to Figure 4, but the anellipticity parameters are η1 ¼ 0.3, η2 ¼ 0.3, and η3 ¼ 0.3.

Figure 7. Similar to Figure 5, but the medium parameters are υp0 ¼ 3.0 km∕s, r1 ¼ 1.2 and r2 ¼ 1.3, η1 ¼ 0.3, η2 ¼ 0.3, η3 ¼ 0.3, θ ¼ π∕4,
ϕ ¼ π∕6, and ψ ¼ 0.
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Figure 8. Same as Figure 4, except the validity range of the radial horizontal slowness components is considered.

Figure 9. Same as Figure 5, except the validity range of the radial horizontal slowness components is considered.

Figure 10. Same as Figure 6, except the validity range of the radial horizontal slowness components is considered.

Slowness surface for orthorhombic media C107

D
ow

nl
oa

de
d 

04
/2

4/
16

 to
 1

29
.2

41
.6

9.
20

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



with strong anellipticity, provided that horizontal slowness compo-
nent is located in the validity range given by equations 34 and 35.

DISCUSSION

Because the proposed formula is analytic, it is very easily imple-
mented in complex procedures, such as seismic ray tracing and
phase-shift migration. The disadvantage of the proposed formula
is that it cannot achieve a wide-angle approximation for tilted ortho-
rhombic media. The “Numerical results” secton illustrates that the
validity range of polar angles is approximately ϑ ∈ ð−67°; 67°Þ for
the second orthorhombic model with relatively strong anellipticity.
Therefore, the validity range of the radial horizontal slowness com-
ponent must be considered before using the proposed formula.
In the “Introduction,”we mention that it is useful for applied seis-

mology to represent the vertical slowness component in terms of the
horizontal components for anisotropic media. We now discuss some
specific applications of the proposed formula. First, the proposed
formula can be used in phase-shift migration of surface P-wave data
for 3D tilted orthorhombic media. From the relationship between
slowness and wavenumber, our formula for the vertical slowness
component can be easily transformed to calculate
the vertical wavenumber component. For later-
ally homogeneous media, the phase-shift extrap-
olation of source and receiver wavefield is dis-
cussed in Berkhout (1982, pp. 225–240). For lat-
eral heterogeneous media, Gazdag and Squazzero
(1984) propose the phase-shift migration plus in-
terpolation. Margrave and Ferguson (1999) pro-
pose the pseudodifferential equation for phase-
shift migration. It is not difficult to extend their
procedures for 3D tilted orthorhombic media with
lateral variations. Second, the proposed formula
can be used as Snell’s law to calculate the vertical
slowness component of reflected and transmitted
P waves in layered orthorhombic media. In the
case of a horizontally layered orthorhombic medi-
um, the lateral slowness is preserved for all layers,
and the proposed formula yields the vertical slow-
ness for the down- and upgoing waves for each
layer. Snell’s law requires the lateral projections

of slownesses of all generated waves on the tangent of a local inter-
face are equal to that of the incident wave, which must be taken in
account for ray tracing in multilayered media. Numerical examples
show that our formula is very accurate for incident angles up to 67° in
tilted orthorhombic media with strong anellipticity. This means that
our formula can satisfy the requirement of calculating reflection trav-
eltimes of P waves with short to moderate source-receiver offsets in
multilayered orthorhombic media. Last, let us discuss in detail the
application of the proposed formula on calculating the intercept time
in τ-p domain for horizontally layered, tilted orthorhombic media. In
this case, for a fixed azimuth of phase propagation direction, the ra-
dial horizontal slowness is preserved for all horizontal layers. The
intercept time in τ-p domain is expressed by the summation over
the product of layer thickness and absolute magnitudes of vertical
slowness components of down- and upgoing waves

τðpr;φÞ ¼
XN
i¼1

ziðqðDÞðpr;φÞ − qðUÞðpr;φÞÞ; (37)

where τ denotes the intercept time; pr denotes the radial horizontal
slowness; φ denotes the azimuth of radial horizontal slowness; qðDÞ

Figure 11. Same as Figure 7, except the validity range of the radial horizontal slowness components is considered.

Table 1. Parameters for a five-layer orthorhombic model: Δz denotes the layer
thickness;υp0 denotes the P-wave velocity along the z-axis in orthorhombic
media with the three symmetry planes orthogonal to the Cartesian coordinates;
r1 and r2 are the factors for the NMO velocities squared defined in the [y, z]
and [x, z] planes in the orthorhombic media; η1, η2, and η3 are three
anellipticity parameters defined in the [y, z], [x, z], and [x, y] planes of the
orthorhombic media; and ϕ, θ, and ψ are Euler angles introduced in Figure 1
to describe the orientation of a tilted orthorhombic medium with respect to an
orthorhombic media with the three symmetry planes orthogonal to the
Cartesian coordinates.

Layer Δz (km) υp0 (km∕s) r1 r2 η1 η2 η3 ϕ θ ψ

1 0.3 2.0 1.1 1.2 0.1 0.2 0.1 0 0 0

2 0.4 2.5 1.2 1.1 0.05 0.1 0.1 π∕6 0 π∕3
3 0.5 3.0 1.0 1.2 0.1 0.2 0.05 π∕4 π∕6 π∕4
4 0.45 3.5 1.3 1.2 0.05 0.2 0.15 π∕3 π∕4 π∕6
5 0.55 4.0 1.3 1.15 0.05 0.05 0.25 π∕6 π∕3 π∕3
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and qðUÞ denote the vertical slowness components of down- and up-
going P waves, which can be approximately calculated by equa-
tions 34 and 35; and zi denotes the thickness of the ith layer.
From equations 23 and 24, we find that the intercept time satisfies

the following symmetry properties:

τðpr;φÞ ¼ τðpr; π þ φÞ: (38)

Combining equations 37 and 21, we calculate the approximate
intercept time for a five-layer orthorhombic model. The interval
parameters of this model are shown in Table 1. The validity regions
34 and 35 are considered when using formula 21 to calculate the
approximate vertical slowness components of down- and upgoing P
waves. Figure 12 shows the approximate intercept times with the
exact ones. This example indicates that the proposed formula for
vertical slowness is applicable for calculating intercept time in τ-p
domain for horizontally layered, tilted orthorhombic media.

CONCLUSION

A perturbation method and Shanks transform are combined to
derive the proposed formula for the vertical slowness components
of down- and upgoing plane P waves in tilted orthorhombic media.
The validity range for the proposed formula is determined by the
slowness of the horizontally propagating plane P waves in tilted
orthorhombic media. The proposed formula is accurate for tilted
orthorhombic media with weak to strong anellipticity.
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APPENDIX A

EXPANSION COEFFICIENTS OF VERTICAL
SLOWNESS COMPONENT

In this appendix, we show the perturbation coefficients defined in
equation 20. The zero-order coefficient ~q0 corresponding to an el-
liptically orthorhombic medium ðηi ¼ 0; i ¼ 1;2; 3Þ with tilted
symmetry axes is given by

~qð�Þ
0 ðpr;φÞ ¼

AðφÞ ~pr �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ðφÞ − BðφÞ ~p2

r

p
v2ðφÞ ; (A-1)

where ~pr ¼ υp0pr; functions AðφÞ, BðφÞ, and vðφÞ are given by

AðφÞ¼1

2
ðr1−r2Þsinð2ψÞsinθsinðϕ−φÞ

−
1

4
ð2−r1−r2þðr1−r2Þcosð2ψÞÞsinð2θÞcosðϕ−φÞ; (A-2)

Figure 12. The P-wave intercept time in τ-p domain versus the radial horizontal slowness component along different azimuths of the phase
propagation direction in a five-layer orthorhombic model. Dashed black lines correspond to the approximate intercept times calculated by the
proposed vertical slowness formula, and solid gray lines correspond to the exact intercept times. From the top left to the bottom right, the plots
correspond to the azimuths of phase propagation direction (a) φ ¼ 0, (b) φ ¼ π∕6, (c) φ ¼ π∕3, (d) φ ¼ π∕2, (e) φ ¼ 2π∕3, and (f) φ ¼ 5π∕6,
respectively.
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vðφÞ ¼ cos2 θ þ r2 cos2 ψ sin2 θ þ r1 sin2 θ sin2 ψ ; (A-3)

BðφÞ ¼ B0 þ B1 cosð2ðϕ − φÞÞ þ B2 sinð2ðϕ − φÞÞ;
(A-4)

with

B0 ¼
1

8
ð3r1 þ 3r2 þ 2r1r2Þ þ

1

8
ðr1 þ r2 − 2r1r2Þcos2 θ

−
1

8
ðr1 þ r2 − 2r1r2 þ 2ðr1 − r2Þ cosð2ψÞÞsin2 θ; (A-5)

B1 ¼ −
1

8
ðr1 − r2Þð3þ cosð2θÞÞ cosð2ψÞ

þ 1

4
ðr1 þ r2 − 2r1r2Þsin2 θ; (A-6)

B2 ¼ ðr1 − r2Þ cos θ cos ψ sin ψ : (A-7)

By considering the following definitions related to the slowness
components for an orthorhombic medium with the three symmetry
planes orthogonal to the Cartesian coordinates

~pv1 ≡ ~prðcos θ cosðϕ − φÞ cos ψ − sinðϕ − φÞ sin ψÞ
− ~q0 cos ψ sin θ; (A-8)

~pv2 ≡ − ~prðcos ψ sinðϕ − φÞ þ sin ψ cos θ cosðϕ − φÞÞ
þ ~q0 sin θ sin ψ ; (A-9)

~qv ≡ ~pr cosðϕ − φÞ sin θ þ ~q0 cos θ; (A-10)

where equations A-8 to A-10 follows from equation 13 with pv ¼
ð ~pv1; ~pv2; ~qvÞT and p ¼ ð ~pr cos φ; ~pr sin φ; ~q0ÞT ; ~q0 is given by
equation A-1, the first- and second-order coefficients ~qi and ~qij
in equation 20 are expressed in compact forms as follows:
The first-order coefficients ~qi, i ¼ 1;2; 3

~qð�Þ
1 ðpr;φÞ ¼ ∓

r1 ~p2
v2ð1 − ~q2vÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − B ~p2

r

p ; (A-11)

~qð�Þ
2 ðpr;φÞ ¼ ∓

r2 ~p2
v1ð1 − ~q2vÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − B ~p2

r

p ; (A-12)

~qð�Þ
3 ðpr;φÞ ¼ ∓

~q2v − ð1 − r1 ~p2
v2Þð1 − r2 ~p2

v1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − B ~p2

r

p : (A-13)

The second-order coefficients ~qij, i; j ¼ 1;2; 3, and i ≤ j

~qð�Þ
11 ðpr;φÞ ¼ ∓

v2 ~q21 − c11 ~q1 − d

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − B ~p2

r

p ; (A-14)

~qð�Þ
22 ðpr;φÞ ¼ ∓

v2 ~q22 − c22 ~q2 − d

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − B ~p2

r

p ; (A-15)

~qð�Þ
33 ðpr;φÞ ¼ ∓

v2 ~q23 − c33 ~q3 − d

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − B ~p2

r

p ; (A-16)

~qð�Þ
12 ðpr;φÞ ¼ ∓

v2 ~q1 ~q2 − c12 ~q1 − c21 ~q2 þ dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − B ~p2

r

p ; (A-17)

~qð�Þ
13 ðpr;φÞ ¼ ∓

v2 ~q1 ~q3 − c13 ~q1 − c31 ~q3 þ e13ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − B ~p2

r

p ; (A-18)

~qð�Þ
23 ðpr;φÞ ¼ ∓

v2 ~q2 ~q3 − c23 ~q2 − c32 ~q3 þ e23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − B ~p2

r

p ; (A-19)

with

c11 ¼ 4 ~pv2r1ð ~pv2 ~qv cos θ− ð1− ~q2vÞsin θ sin ψÞ; (A-20)

c22 ¼ 4 ~pv1r2ð ~pv1 ~qv cos θþð1− ~q2vÞsin θ cos ψÞ; (A-21)

c33 ¼ −4ð ~qv cos θ þ sin θð ~pv2r1ð1 − ~p2
v1r2Þ sin ψ

− ~pv1r2ð1 − ~p2
v2r1Þ cos ψÞÞ; (A-22)

c12 ¼ c32 ¼
c22
2

; (A-23)

c21 ¼ c31 ¼
c11
2

; (A-24)

c13 ¼ c23 ¼
c33
2

; (A-25)

d ¼ r1r2 ~p2
v1 ~p

2
v2 ~q

2
v; (A-26)
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e13 ¼ r1 ~p2
v2ð2 − 2r2 ~p2

v1 − ~q2vð2 − r2 ~p2
v1ÞÞ; (A-27)

e23 ¼ r2 ~p2
v1ð2 − 2r1 ~p2

v2 − ~q2vð2 − r1 ~p2
v2ÞÞ: (A-28)

Note that for convenience, we omit the arguments pr and φ of
functions ~pv1, ~pv2, ~qv, and ~qi (i ¼ 1;2; 3) in the right sides of equa-
tions A-11 to A-28.

APPENDIX B

THE SLOWNESS OF HORIZONTALLY PROPA-
GATING PLANE P WAVES IN TILTED

ORTHORHOMBIC MEDIA

In this appendix, we derive the exact slowness of horizontally
propagating plane P waves in a tilted orthorhombic medium. For
a fixed propagation azimuth φ, the vector of horizontal propagation
direction in this medium is given by

n ¼ ðcos φ; sin φ; 0ÞT: (B-1)

Considering the coordinate rotation 13, we find the vector of
propagation direction, nv ¼ ðnv1; nv2; nv3ÞT , defined in the corre-
sponding vertical orthorhombic medium

nv ¼ RcRbRan; (B-2)

where Ra, Rb, and Rc are given by equation 12.
The slowness components of plane P-wave in direction nv is ex-

pressed by the magnitude of phase velocity υ

pv ¼
1

υ
nv: (B-3)

Substituting relation B-3 into the slowness surface equation 7
with equations 8–11 leads to the following cubic equation in υ2:

υ6 þ k4υ4 þ k2υ2 þ k0 ¼ 0; (B-4)

with

k4 ¼ υ2p0ð−r2ð1þ 2η2Þ þ n2v3ð−1þ r2ð1þ 2η2ÞÞ
− n2v2ðr1ð1þ 2η1Þ þ r2ð1þ 2η2ÞÞÞ; (B-5)

k2 ¼
2

1þ 2η3
υ4p0ðn2v3ðn2v1r2η2 þ n2v2r1η1Þð1þ 2η3Þ

þ n2v1n
2
v2r1r2ð1þ 2η1Þð1þ 2η2Þη3Þ; (B-6)

k0 ¼ 2n21n
2
2n

2
3r1r2υ

6
p0Ω; (B-7)

where Ω is given by equation 10 with 11.

Solving this cubic equation gives the slowness pe ¼ 1∕υ of hori-
zontally propagating plane P-wave along the propagation azimuth φ
in a tilted orthorhombic medium

1

p2
e
¼ 2μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3

�
k24
3
− k2

�s
−
k4
3
; (B-8)

where

μ ¼ cos

�
1

3
arccos

�
−
μ1
μ2

��
; (B-9)

with

μ1 ¼ 2

�
k4
3

�
3

−
k4k2
3

þ k0; (B-10)

μ2 ¼ 2

�
1

3

�
k24
3
− k2

��
3∕2

: (B-11)
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