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The offset-midpoint traveltime pyramid in 3D transversely
isotropic media with a horizontal symmetry axis

Qi Hao', Alexey Stovas', and Tariq Alkhalifah?

ABSTRACT

Analytic representation of the offset-midpoint traveltime
equation for anisotropy is very important for prestack Kirch-
hoff migration and velocity inversion in anisotropic media.
For transversely isotropic media with a vertical symmetry
axis, the offset-midpoint traveltime resembles the shape of
a Cheops’ pyramid. This is also valid for homogeneous 3D
transversely isotropic media with a horizontal symmetry
axis (HTI). We extended the offset-midpoint traveltime pyr-
amid to the case of homogeneous 3D HTI. Under the as-
sumption of weak anellipticity of HTI media, we derived
an analytic representation of the P-wave traveltime equation
and used Shanks transformation to improve the accuracy of
horizontal and vertical slownesses. The traveltime pyramid
was derived in the depth and time domains. Numerical ex-
amples confirmed the accuracy of the proposed approxima-
tion for the traveltime function in 3D HTI media.

INTRODUCTION

In most cases, transversely isotropic media with a horizontal
symmetry axis (HTI) media are caused by a system of parallel ver-
tical circular (“penny-shaped”) cracks embedded in an isotropic
background (Tsvankin, 2001, pp. 12—13). The azimuthal character-
istics of seismic waves in HTI media can help to identify the azi-
muth of fractures (e.g., Grechka and Tsvankin, 1999; Bakulin et al.,
2000), which is important for oil and gas exploration in fractured
reservoirs. The azimuthal variation of velocities influences travel-
times in HTI media.

For prestack phase-shift migration of common-midpoint (CMP)
gathers, traveltime as an analytic function of offset and midpoint is

given by a simple double-square-root (DSR) equation in homo-
geneous, isotropic media (Yilmaz, 2001, p. 638). Because the trav-
eltime surface on the offset-midpoint plane from an image point is
like a pyramid, Claerbout (1985, pp. 164-166) first names it as
Cheops’ pyramid. The traveltime pyramid is often used for prestack
time migration (Yilmaz, 2001, pp. 725-728). However, it is difficult
to obtain the analytic traveltime formulations in anisotropic media
because the explicit relationship between group velocity and ray
angle does not exist in anisotropic media. Even for transversely iso-
tropic media with a vertical symmetry axis (VTI), the traveltime is
often calculated numerically. Alkhalifah (2000b) derives the offset-
midpoint traveltime equation or Cheops’ pyramid equation for VTI
media under the assumption of weak anellipticity. Hao and Stovas
(2013) extend the offset-midpoint traveltime equation to the case of
2D transversely isotropic media with a tilt symmetry axis (TTI).
The core of this paper is to propose an analytic traveltime ap-
proximation for prestack Kirchhoff migration in homogeneous
3D HTI media with the aid of the stationary phase method and the
slowness surface rotation between HTI and VTI media. Although
only the case of 3D homogeneous HTI media is discussed in this
paper, the time-domain traveltime pyramid derived by us can apply
to prestack Kirchhoff time migration by using the effective medium
parameters. To implement the depth-domain traveltime pyramid for
the prestack Kirchhoff depth migration in a vertically inhomo-
geneous medium, it can be assumed that this vertically inhomo-
geneous medium is locally “homogeneous” for each downward
extrapolation step Az. In each extrapolation step Az, the traveltime
is analytically calculated by means of our approach and wavefield
migration is realized by the sum of the migration operator given by
equation 1 over all traces recorded at the previous depth grid.
The paper is organized as follows: After this introduction, we will
first derive the ray traveltime from the offset-midpoint phase-shift
migration operator with the aid of the stationary phase method. We
will then derive the analytic approximation for source and receiver
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slownesses by a combination of the slowness surface rotation be-
tween VTI and HTI media and the Shanks transformation (Bender
and Orszag, 1978, pp. 369-375), from which we will obtain the trav-
eltime pyramid in the depth and time domains. As a special case, the
P-wave reflection traveltime formulation for a horizontal reflector in
3D HTI media is further obtained by simplifying the time-domain
traveltime pyramid. We will next illustrate the shape of the time-do-
main traveltime pyramid, the accuracy of the reflection traveltime
formulation and the common-offset migration isochrones obtained
from the depth-domain traveltime pyramid by some simple numerical
examples. We will finally present our conclusions.

THE STATIONARY PHASE METHOD

In this section, we derive the exact expression for scattering ray
traveltime in a homogeneous 3D HTI medium from the stationary
phase approximation of wavefield extrapolation. According to
equations A-24 and A-27 given in Appendix A, the single-trace re-
sponse of the 3D prestack phase-shift migration defined in the half-
offset-midpoint domain for homogeneous anisotropic media reads

P(x1,xp,h; =0,hy,=0,2,t=0)
] s
=0,w)exp(ioT)dwdky, dk;,dk, dk,,, 1
where T is the traveltime shift given by

T= (Q€ +qg)z_2px1 (.X1 _x(l)) _sz2(-x2 _x(z))
+2p ) +2p kS, 2

1

Figure 1. The geometric explanation of quantities in equations 1
and 2. In the Cartesian coordinate system (oxyz), the source
S = (51, 52,0), the receiver G = (g, g, 0), and the midpoint M =
(x9,x3,0) are located on the surface =. The half-offset vector
h® = (K9, hY) equals a half of the distance vector from the source
S to the receiver G. The point I = (x1, x,, z) is an image point. The
point I' = (x, x,,0) is the projection of the image point I on the
surface X. The vector y, = (y,,ys2) denotes the lateral distance
from the source S to the image point I, and the vector
Yy = (¥g1.¥,2) denotes the lateral distance from the receiver G
to the image point L. y, and y, denote the azimuths of vectors y;
and y,, respectively. The seismic ray from the image point I to
the source S has the source slowness (py, ps», —¢;), and the seis-
mic ray from the image point I to the receiver G has the receiver
slowness (py1. pg2. —q,)- These slownesses in the source-receiver
domain can be converted to midpoint-half-offset domain through
equation 3.

and P and P are seismic traces before prestack depth migration and
the seismic image after prestack depth migration, respectively;
subscripts 1 and 2 denote x- and y-axes, respectively; (x9,x9) is
the midpoint position on acquisition surface; (x;, x,, z) is the position
of the image point; (h9, h9) is the source-receiver half-offset; ¢, and
q, are the vertical slowness components defined at source and
receiver positions, respectively; (pyi, pxo) = (kg /(2w), kyp/(2w))
and (pu1, pr2) = (kni/(2w), ko /(2w)) are the horizontal slowness
vectors defined in midpoint-half-offset space, where (k,;, k,,) and
(kp1, kyp) are the corresponding wavenumber vectors. The geometric
explanation of these quantities can be seen in Figure 1.

From equation A-14 given in Appendix A, we conclude that the
source slowness vector (py, py,) and the receiver slowness vector
(Pg1- Py) are linearly related to the half-offset slowness vector
(Pn1s Pr2) and the midpoint slowness components (p,, P,2)

Pst = Px1 = Ph1»
Ps2 = Px2 = Ph2»
Pgl = Px1 + Pn1s
Pp = Px+ P 3)

Thus, equation 2 can be written in terms of slownesses for source
and receiver:

T = (qs + qg)Z T Ps¥s1 T PaYsa T Pg1Yg + PypYgs (4)

where (y,,y,) denote projections of the lateral distance between
image point and source given by (y,,yn)= (x0—h0 —x,

—hY —x,) and (y,1.y,») denotes projections of the lateral dis-
tance between image point and receiver given by (y41.v4) = (" +
h9 — x;,x9 + hY — x,). Equation 4 represents the total traveltime
shift of the plane-wave propagations from the source located at
(x9 = 19, x9 — 13,0) to the image point located at (x;, x,,z) and
back to the receiver located at (x9 + 49, x9 + K9, 0).

The integrals in equation 1 can be estimated by the stationary
phase method, approximately. The main contributions to the inte-
grand come from the stationary phase in which the phase function is
either the minimum or the maximum. In this case, the source and
receiver slownesses at the stationary point correspond to the seismic
rays that link the source, receiver, and scattering point. Hence, we
can use the stationary phase method (Alkhalifah, 2000b) to derive
the traveltime of the seismic ray from source to image point then
back to receiver. According to equation 3, the stationary point of the
phase function given in equation 1 can be found from the following
equations:

oT
=0 ®))
OP1(s.q)
and
oT
=0, (6)
0P2(s.9)

where (p, p,) are either (py, py,) for the source or the receiver,
respectively. Equations 5 and 6 are the mathematical representations
of Fermat’s principle.
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Substituting equation 4 into equations 5 and 6, respectively, we
obtain the following relations:

Wisg) _ Vi) o
ap 1(s.9) Z
and
M(sg) _ _Yausg) )
apZ(s.g) z

where g and (y,, y,) are either g, and (y,;.,,) for source or g, and
(¥g1. ¥g2) for receiver. Equations 4, 7, and 8 represent the exact trav-
eltime of the seismic ray from the source to the image point then
back to the receiver.

SLOWNESS APPROXIMATION AT A STATIONARY
POINT IN 3D TRANSVERSELY ISOTROPIC
MEDIA WITH A HORIZONTAL
SYMMETRY AXIS

HTI and VTI media can be treated as special cases of the more
complex orthorhombic media. In homogeneous VTI media, P- and
SV-waves can be described by the vertical velocities of P- and SV-
waves and two Thomsen (1986) parameters ¢ and §. In practice, we
can ignore the influence of SV-wave vertical velocity on P-wave
velocity and traveltime in TI media (Tsvankin and Thomsen,
1994; Alkhalifah, 1998; Zhou and Greenhalgh, 2008). Hence, the
velocity and traveltime of P-wave in VTI media can be described by
the P-wave vertical velocity, the normal-moveout velocity v,,, =
vVl + 26, and the anellipticity parameter n = (¢ — ) /(1 + 26).
Besides the three parameters mentioned above, an additional param-
eter, the azimuth ¢ of the symmetry axis, is introduced to depict the
azimuthal feature of the velocity and traveltime for P-waves in 3D
HTI media.

Equations 4, 7, and 8 depend on the horizontal and vertical slow-
ness projections. To obtain the slownesses for the source and receiv-
er, we consider the slowness surface equation for 3D HTI media.

According to Alkhalifah (1998, 2000a), the 3D phase slowness
surface for the P-wave in a VTI medium can be written in the
form,

Fyn = U(%‘]%(l - ZnU%mo(p%I + P%z))
+ (14 2n)05me (P + P3) —1=0,  (9)

where (p,, p,») and g, are the horizontal and vertical slowness
components, respectively. Equation 9 is valid for smoothly hetero-
geneous VTI media.

The slowness surface in a 3D HTI medium can be obtained from
the VTI version by a slowness rotation. In Figure 2, the p,i, p,»,
and ¢, system denotes the slowness in VTI media; and the p;, p,,
and ¢ system denotes the slowness in HTI media; p,, and ¢, are
located on the p; — p, plane.

The 3D slowness surface equation for an HTI medium is obtained
by applying the slowness rotation:

D1 0 —sing¢g cos¢ Dol
Pl =] 0 cos¢ sing P |, (10)
q -1 0 0 q,

with ¢ being the azimuth of the g,-axis measured from the p-axis
on the p; — p, plane.

Equation 10 shows the transformation of the slowness compo-
nents from VTI to HTI media. The slowness surface in an HTI
medium is

q=q(p1, p2), (11)
and the slowness surface for a VTI medium is
qdy = Qv(pvlvplﬂ)- (12)

The perturbation of equation 10 can be written in the form

Ap, 0 —sing¢g cos¢ Ap,
Ap, | = 0 cos ¢ sin ¢ Ap, |, (13)
Ag -1 0 0 Agq,

and the perturbation of vertical slownesses g and ¢, can be obtained
by differentiating equations 11 and 12, respectively,

0 dq
Ag =L Ap+ T pp, (14)
0p1 0
and
0 0
Aql/ qv Apvl + 1 APLQ- (15)
ale ()p,/-z

To express the partial derivatives of slowness in an HTI medium
in terms of that in a VTI medium, we consider two special cases.
For the first case, we assume that the perturbation of the slowness
surface in a VTT medium is caused by the change in only p,, not
Do that is,

A
pvl

)2 Y
D, |

' q ]—7

Figure 2. The geometry of the slowness coordinate system. The
slowness vector (p,1, Pu2,q,) is the projection of slowness pina
VTI medium, and (p;, ps, q) is the projection of slowness p in an
HTI medium. The symmetry axis of the VTI medium is along the
q,-axis, whereas p,, and g, are located on the p; — p, plane, and ¢
denotes the azimuth of ¢, measured from p;-axis. Also, p, denotes

the projection of slowness p in the p,; — p,, plane; a is the azimuth
of p, measured from the p,;-axis; p, denotes the projection of
slowness p in the p; — p, plane; and f is the azimuth of p, mea-
sured from the p,-axis.
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Ap, =0. (16)

Hence, from equations 13—15, we obtain the following linear equation:

-1 0 cosqb%
%pvl Apl
0 -1 sing—L Ap, | =0. (7
a_q 6_q lpvl Apvl
op1 0p>

The existence of a nonzero solution of equation 17 implies that the
determinant of the coefficient matrix given in equation 17 is zero.
Hence, we obtain the expression for dq,/dp,,

ag., -1
- ( Sholts ¢—) .
Pl

For the second case, we assume that the perturbations of slowness sur-
face in a VTI medium is caused by the change in only p,, not p,;; that
is,

Apvl =0. (19)

A similar procedure can be performed for equations 13—15. Conse-
quently, we obtain the expression

dq
cos ¢ — —sin ¢p—
aqv _ P2 apl . (20)

ap,,z .
v cos¢—+sm ¢—
ap; op,

Equations 18 and 20 describe the partial derivative relations between
VTI and HTI media. A similar idea is used for mapping of moveout
functions in TI media (Stovas and Alkhalifah, 2014). By substituting
equations 7 and 8 into equations 18 and 20, we represent the slowness
derivatives in terms of spatial coordinates in an HTI medium:

d
qv _ z . o
Opy1 Y1 COS @ + y, sin ¢
and
99, Yy cos ¢ —y; sin ¢ 22)

0Py Vi CoSp+y,sing

To derive the expressions for p,; and p,, from equations 21 and
22, we introduce the radial horizontal slowness p, and the azimuth
a (see Figure 2) using the following relations:

Pyt = Py COS @ (23)

and
Pu2 = D, Sin . (24)
Because the vertical slowness component ¢, in a VTT medium is

the function of the horizontal slowness component p,, it follows
that the first-order derivatives dg,/dp,, and dq,/dp,, are given by

9q, _dq,
=—"Ycos a (25)
apvl dpv
and
aq., dq,
9v _ v G . (26)
ava dpv

From equations 21, 22, 25, and 26, we obtain the expressions for
dq,/dp, and tan a:

dq, <0qy>2+<0q@>2
dpb apvl ava
/(2 cos ¢ =y, sin §)* + 22

|y1 cos ¢+ y, sin ¢|
=c Q7

and

9q, ,9q,
— /=

tan o =
apﬂ apvl

= ( cos ¢ — sm qb) (28)

From equations 9, 23, and 24, we can obtain the explicit expres-
sion for g, in terms of p,. Then, substituting it into equation 27, we
obtain the equation for the horizontal slowness component p,,

p?/Ul'lmO_c UO( 1+2plvnm0’7) ( 1+pLUan(1+2’1)):O'
(29)

From equations 9, 23, and 24, we can also obtain p, represented
in terms of g,. Similarly, we derive the equation for the vertical
slowness component ¢, given by

gt — (1 = g20}) 0o (1 + 27— 2¢%0%n)° = 0. (30)

Equations 29 and 30 are quartic equations with respect to vari-
ables p2 and g2, respectively. Under the assumption of weak anel-
lipticity of HTI media, we use the second-order perturbation of p,
and ¢, in the anellipticity parameter # (considering that it is small)
to obtain the following approximations:

Pv = _r[p1)0 + Pm(z’?) + p1;2(277)2] (31)

and

g, = Y{q.0 + 9,1(20) + q,2(2n)?], (32)

where we imply that the sums in the square brackets are positive and
the function ¥ controls the sign selection for p, and g,:

Y1 €OS )+ y, sin @
|y1 cos ¢+ y, sin @[

(33)

The selection of signs for p, and ¢, are given in Appendix B.
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By substituting equation 31 into equation 29, we obtain a poly-
nomial equation in 7. Because equation 31 is the trial solution of
equation 29, it follows that all coefficients in this polynomial equa-
tion should be zero. Consequently, we derive

CUg

Pvo = ’ (34)
Unmo V C UO + Dnmo
A3 (202 + 4o
Pp— "““’5)/2 , (35)
2vnmo(c UO + Unmo)
and
3 4c2 24
Dy = ¢ UO(C UO +4c vovnmo ":/2 Unmo) (36)
Svnmo(c DO + Uan)
In a similar way, we obtain coefficients g,;, i = 0,1, 2,
dyo = $’ (37)
UO\/C UO + vnmo
3¢*030nmo
1=5 35 5 55 (38)
quv1 2(c Uo + Unmo)5/2
and
3 20
qu c UODan(C UO Dnmo) (39)

8( 0 + Unmo)g/z

Shanks transformation (Bender and Orszag, 1978, pp. 369-375)
is used to improve the accuracy of the trial solutions for the hori-
zontal and vertical slowness components p, and g, in a VTI medi-
um. The final results become

2p3in
)= —Y<Pz;0 + (40)
Pv1 — 2]71;2’1
and
2¢2,n
q, = Y(%o ), 41)
qv1 — 29,01

where the expression for 1" is given by equation 33. The derivations
of equations 40 and 41 can be seen in Appendix C.

From equations 10, 23, and 24, we obtain the norm p of the hori-
zontal slowness vector, the azimuth f of the horizontal slowness
vector measured from x-axis (see Figure 2), and the vertical slow-
ness component in a 3D HTI medium,

p=\/pitpi=/pisinvatg @)

P, €Os ¢ sin a+ g, sin ¢
—p, sin ¢ sin a + g, cos ¢’

tan f = py/p) = (43)

and
q = —p, cos a, (44)

where the azimuth «a is defined in equation 28.

Equations 42-44 show that the P-wave slowness (p;, p,, ¢) in an
HTI medium at the stationary point can be obtained by calculating
the corresponding slowness in a VTT medium.

AZIMUTH-DEPENDENT TIME- AND DEPTH-

DOMAIN TRAVELTIME PYRAMIDS FOR 3D

TRANSVERSELY ISOTROPIC MEDIA WITH
A HORIZONTAL SYMMETRY AXIS

To derive an azimuth-dependent traveltime pyramid equation, we
introduce the azimuth angle y, which denotes the observation azi-
muth measured from the x-axis (see Figure 1):

tan V(s.g) = yZ(Av.g)/yl(s,g)’ 45)

and the norm y of the lateral distance projection for source and
receiver, respectively,

V(s.g) = \/(y](s,g))2 + (y2(s,g))2’ (46)

where y, y, and (y;, y,) are either y,, y,, and (y,;, y,,) for the source
Or ¥4 Y4 and (ygl,yyz) for the receiver. The expressions for
(¥51.¥s2) and (y41.y,2) are given below equation 4.

Considering equations 42, 43, 45, and 46, traveltime equation 4
becomes

T(Xl, X7, X(l), Xg, h(1)7 hg, Z) = (QV + Qg)z
+ PsYs €0s(ys = Bs) + pyyg cos(yy, —B,).  (47)

which is the depth-domain version of the traveltime pyramid for a
3D HTI medium.

The time-domain traveltime pyramid can be derived by relating
the depth z to the zero-offset two-way traveltime 7. Setting half-off-
set (h9, h9) = 0 and lateral projection of image point equal to lateral
midpoint projection, (x;,x;) = (x9,x9) in equation 2, we obtain the
zero-offset two-way traveltime ,

T = T(xl,xz,x(f = xl,xg = xz,h? =0, h(z) =0,z) = 2q,02,
(48)

and the corresponding P-wave vertical slowness component g,

1

—. (49
Uan \% 1 + 2’1

-0 (qs+qg>|xl_xl,h]_o

NI'—‘

X, =x,h) =0

Substituting equation 48 into equation 47, we obtain the time-
domain traveltime pyramid for an HTI medium,
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Unmo V 1+ 2’7
2

+ PsYs COS(}’S - ﬁv) + pgyg COS(}/g - :Bg) (50)

T(xy, xp. X0, x5, Y, 3. 7) = (45 +qy)7

For a homogeneous 3D HTI medium, we have model parameters
09, Vamo» 11> and ¢. For a single image point in this medium, we can
use equation 50 to analytically calculate the P-wave diffraction trav-
eltime. In equation 50, slowness projections for source and receivers
(ps» q5) and (py, q,) can be analytically calculated from equa-
tions 27, 28, 33-44; azimuth angles (f,, y,) for source and (f,,
74) for receiver can be obtained from equations 43 and 45.

Alkhalifah (2013) derives an approximate solution of the P-wave
eikonal equation in inhomogeneous 3D HTI media. He proposes to
expand the traveltime with respect to the azimuth of the symmetry
axis ¢ and the anellipticity parameter 7. In our derivations of the
traveltime pyramid, we expand the slowness components with re-
spect to only the anellipticity parameter . Hence, the approximation
proposed by us has the same accuracy as Alkhalifah’s approxima-
tion, regardless of the expansion of traveltime with respect to azi-
muth ¢ in his derivation.

AZIMUTH-DEPENDENT TRAVELTIME
APPROXIMATION FOR A HORIZONTAL
REFLECTOR IN 3D TRANSVERSELY
ISOTROPIC MEDIA WITH A HORIZONTAL
SYMMETRY AXIS

In the case that the image point is located vertically under the
midpoint, we have (x; — xJ, x, — x3) = 0 and (p,,, px2) = 0. Thus,
equation 50 yields the traveltime equation for reflections in a hori-
zontal reflector:

T(h°,7) = /1 4 200amotq + 2pyh° cos(y — ),  (51)

where 70 = \/(hY)? + (h3)? denotes the norm of the half-offset
projection and y — § denotes the variation between the acquisition
azimuth and the horizontal slowness vector. For a homogeneous
isotropic medium, y — f equals zero. In the case of an elliptical
HTI medium (7 = 0), we can obtain the exact expressions for
Dn g, and f from equations 31-45. Finally, equation 51 is reduced
to

2
vnmo DO

T(ho, },) _ \/1.2 4 4<h0)2 <Sin2(;/ - ¢) + C052(7 - ¢)) )
(52)

The derivation of equation 52 is shown in Appendix D. Further sim-
plification for the isotropic case results in the well-known hyper-
bolic traveltime equation:

0)2
T(hO,y) = [ + 4(2]17). (53)

NUMERICAL EXAMPLES

To examine the shape of the traveltime pyramid as a function of
the half-offset and the midpoint, we design a homogeneous 3D HTI
model with a symmetry axis aligned to the x-axis. The medium
parameters are vy = 2000 m/s, § = 0.1, and # = 0.1. The image
point is located on the z-axis. The midpoint is located in the origin
of the acquisition coordinate system. The zero-offset two-way trav-
eltime 7 = 3 s for midpoint x° = 0; from which
we calculate the depth of the image point
z =109/ (1 +25)(1 +21)/2 = 3.6 km.

We use equation 50 to calculate traveltime
pyramids. Figure 3 shows the traveltime pyramids
computed for different acquisition azimuths. Only
the azimuthal variation from O to ©t/2 is consid-
ered because the traveltime is symmetric with re-
spect to the y-axis. The peak of the traveltime
pyramid is located at the zero-midpoint (x* = 0)
and the zero-offset (h° = 0) for all azimuths. The
traveltime function is symmetric with respect to
the half-offset and the midpoint due to the hori-
zontal symmetry of HTI media. Figure 3 shows

that the acquisition azimuth y = 0 corresponds
to the symmetry plane of the HTI model. With
an increase in y, the acquisition line moves away
from the symmetry plane. When y = n/2, the ac-
quisition line is located in the isotropic plane of
the HTI model. It can also be seen that the shape
of the traveltime pyramid varies with the change

a b
) -4 )—4
-2} -2
é 0 QE‘, 0
b <
2 2
4 4
-4 -4
c
) -4
-2
o
o
>
2
4
-4

hO(km) hO(km)

Figure 3. Traveltime as a function of the half-offset 2% and the midpoint x° in a 3D HTI
medium with different acquisition azimuths: (a) y = 0, (b) y = z/6, (c) y = n/3, and

d)y=n/2.

in acquisition azimuth. This behavior becomes
more dramatic for large values of midpoint and
offset.

Figure 4 shows slices of the traveltime pyra-
mids from Figure 3 extracted for x° =0 (the
CMP case), h° =0 (the common-offset case),
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b) 3

and the case of X = 1°. We can see that the trav-
eltime decreases as the azimuth increases, and
the traveltime pyramid becomes much flatter.

@ 4 This effect becomes more pronounced for large
~ values of offset and midpoint.

S Next, we test the accuracy of equation 51.

Two-point ray tracing (Shearer and Chapman,

64 1988) is used to calculate the exact P-wave re-

flection traveltime for a horizontal reflector in
a 3D HTI medium. The model parameters, ex-
cept the anellipticity parameter 7, are the same
as in the first test. The zero-offset two-way trav-
eltime is 7 = 3 s. Figure 5 compares the relative
errors in traveltime for HTI models with different
7. The result for 7 = 0 is not shown here because

5t/ 7 | ::?7/6 in this case our approximation equation 51 is
y=ml3 reduced to the exact traveltime equation 52 for
6 / Ty =2 the 3D elliptical HTT model. We can see that
-4 -2 0 2 4 the traveltime approximation 51 is very accurate
hO= x°(km) for all azimuths with a maximum relative error of
0.05% in HTI models with weak anellipticity
Figure 4. Comparison of azimuth-dependent traveltimes extracted from traveltime pyra- (n = —0.1 and 7 = 0.1). The increase of error ver-
mids for (a) x = 0, (b) 4’ =0, and (¢) x* = A’ in Figure 3. sus 7 is significant at a short offset (h°/z < 1) due
a) b) to the weak anellipticity assumption in our deriva-
0 0.03+ tions of equations 50 and 51. The zero-offset trav-
s 9 A ;: 2/6 eltime is not exact because the vertical slowness in
E ~0.02 E 0.02 y=m3 | a 3D HTI medium is an approximate value due to

] © B y=m2 the Taylor series expansion in 7.
E ~0.04 .f'zj 0.01 We also show the variation of common-offset
§ ’ § _______________________________ migration isochrones with the change in acquis-
"""""" ition azimuth. We use equation 50 to calculate

-0.06 0 L

0 1 2 3 4 0 3 4 the migration isochrones. The model parameters
hz from the first example are adopted. To obtain the
© o2 d) g6 common-offset isochrones, we set the half-offset
— HY —~ K0 and traveltime ¢ to be constants, 4% = 500 m
§ 0.15}/\ §» and ¢t = 3 s regardless to the azimuths. Figure 6
g % 0.4 shows the migration isochrones corresponding to
g 01 9 azimuth y = 0, 7/6, 7/3, x/2. Azimuth y = /2
g 0.05 % 0.2 corresponds to the isotropic plane, and azimuth
o 4 y = 0 corresponds to the symmetry plane of the
0 0 HTI medium. The azimuthal variations of migra-
0 Oz 0 1Oz tion isochrones are more significant at large dip

angles. This indicates that the ignorance of the

Figure 5. Relative error of azimuth-dependent traveltime equation as a function of the azimuthal anisotropy can produce significant mi-
half-offset-to-depth ratio in 3D HTI media with 7 equal to (a) —0.1, (b) 0.1, (c) 0.2, and gration errors in HTI media.
(d) 0.3, respectively.

CONCLUSIONS

The azimuth-dependent offset-midpoint traveltime pyramid for
homogeneous 3D HTI media is derived under the assumption of
weak anellipticity. Perturbation in anellipticity parameter n and
using the Shanks transformation help obtain a relatively simple ana-
lytic form for the traveltime approximation. The azimuth-offset
traveltime equation for reflected waves in a horizontal 3D HTI re-
4 flector is obtained from the traveltime pyramid. Despite the approx-
- imations, the equations are reasonably accurate and can be used for
imaging and parameter estimation applications.

Figure 6. The common-offset migration isochrones with different The derivation of traveltime pyramids can be extended to the
acquisition azimuths. case of a 3D homogeneous TTI medium and be used to derive
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the traveltime approximation of reflected wave in a 3D dip-
constrained transversely isotropic model.
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APPENDIX A

PRESTACK PHASE-SHIFT MIGRATION
OPERATOR IN MIDPOINT-HALF-OFFSET
DOMAIN

Here, we derive the midpoint-half-offset domain prestack phase-
shift migration operator for a P-wave in homogeneous anisotropic
media. In advance of our following derivations, we refer to the Fou-
rier transform convention shown in Yilmaz (2001, p. 156). The 2D
Fourier transform of a time-space domain wavefield P(x, ¢) is given
by

Pk, w) = // P(x,t)exp(ikx — iwt)dxdt. (A-1)

Wavefield P(x, r) can be reconstructed from P(k, w) by the 2D in-
verse Fourier transform:

P(x,1) = // P(k,w) exp(—ikx + iwt)dkdw.  (A-2)

The dispersion relation for P-wave in general anisotropic media
can be represented by

S(ky, ko, k., 0) = @, (A-3)

where (k{, k,) denote the horizontal wavenumber vector; k, denotes
the vertical wavenumber component; v denotes the vector contain-
ing the medium parameters; and S denotes the dispersion function
of ki, k,, k_, and v, which can be explicitly obtained for a specified
anisotropic medium (Carcione, 2001, pp. 10-11). Solving equa-
tion A-3 for k? gives

k2 = k2(ky. ky, 0, 0). (A-4)

Transforming equation A-4 from the vertical wavenumber domain
back to the depth domain gives the depth-dependent pseudoacoustic
equation:
02
62 (kl,kz,Z a))+k (kl,kz,a) 'l)( ))P(kl,kz,z,a))zo.
(A-5)

For a homogeneous medium, the medium parameter vector v(z)
becomes depth independent. In this case, we derive the depth do-
main wavefield extrapolation for the one-way P-wave given by

P(kl,kz,z,a)) = P(kl,kz,Z :O,Cl))

Xexp{ﬂ'z k?(kl,kz,w,n)]. (A-6)

Here, the choice of a plus sign “+” in the square brackets means that
exp(iwt + ik,z) is an upcoming wave according to the convention
of inverse Fourier transform defined in equation A-2.

Equation A-6 illustrates that a 3D prestack wavefield for the up-
coming P-wave recorded at the earth’s surface can be extrapolated
downward to depth z. For a prestack 3D wavefield in the source-
receiver domain, the vertical wavenumber component is expressed
as a sum of two square roots: One is associated with downward
continuation of shots and another one is associated with downward
continuation of receivers (Yilmaz, 2001, pp. 631-632):

kz = ksz + kgz

(A-7)
= \/kg(kél s ksZ’ w, 0) + \/kg(kql s ng’ w, D)’

where (kg ky) and (kg ko) denote the horizontal slowness vec-
tors for the source and receiver, respectively; k,, and k,, denote the
vertical wavenumber components for source and receiver. Hence,
we obtain the depth domain wavefield extrapolation for the two-
way P-wave in source-receiver domain given by

P(ksl ’ ks27 kgl ’ nga Z, Cl)) = P(ksls k.f2v kgl ’ ng’ = 0, 0))

x exp(ik,z), (A-8)
where the vertical wavenumber component k, is given by equa-
tion A-7. Corresponding to the frequency-wavenumber domain
wavefield P(kyi,ky. kg, kp. 2, @), the time-space domain wave-
field P(sy, $3, g1, 92, 2, 1) is obtained by the inverse Fourier trans-

form:

P S19S2 91, 92,2, t

=[] ] [tttz

X exp(—i¥)dwdk,, dkydkg dkg, (A-9)
where the phase shift ¥ is given by
V= ks + kosy + kjgi + kpg — wt. (A-10)

Substitution of equation A-8 into equation A-9 results in the pre-
stack source-receiver domain wavefield extrapolation:

P(S]’SZ’gl’g2’Z’t):////P(kslvk.ﬁakglvkg%z:O,CU)

x exp(—i®z)dwdk dkdk, dk . (A-11)

where
_ g1 9 4
——k +k51 +k52 +kql +kgz?—602. (A—12)

Here, the expression for k, is given in equation A-7.
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From the geometric relation between the shot-receiver and mid-
point-half-offset acquisition systems, we obtain

and

Go = Xp + hy, (A-13)

where (x, x,) and (h, h,) denote the midpoint and half-offset vec-
tors, respectively. It follows that the corresponding wavenumber
relations are (Claerbout, 1985, p. 181)

ki = (ki = kn1)/2,

ko = (ko = ki2)/2,

kg = (key + kp1)/2,
and

kyp = (kg + kin)/2, (A-14)

where (ky1,kp) = (20p,1,20p,) and (k1 ki) = 20pu, 20p,)
denote the horizontal slowness vectors for the midpoint and half-offset
(Alkhalifah, 2000b) and (p,;, p.) and (py,;, py2) are the correspond-
ing slowness vectors for the midpoint and half-offset. Through the
wavenumber transform operator A-14, we can convert the source-
receiver domain wavefield to the midpoint-half-offset domain wave-
field. Similar to the source-receiver domain wavefield extrapolation
mentioned above, the midpoint-half-offset domain wavefield extrapo-
lation is written as

P(xl?xZ’hl»thth)://///P(kxl?ka’khl’kh%Z:va)

xexp(—i®z)dwdk,dk,dky dk,,
(A-15)
where P(xy, x5, hy, hy, z, t) denotes the extrapolated CMP gathers at
depth z; P(kyy, kyos kpys ko, z = 0, w) denotes the wavefield in fre-

quency-wavenumber domain at the surface; and the phase-shift © is
given by

© = —DSR (kyy, kya, Kyt k) + ket xz—l
h hy t
+ kx2 + khl ! + qu p 0)2 s (A‘16)

where DSR (k. k2, kj,1, kj,») denotes the DSR operator derived from
equation A-7:

DSR (x.,x5,hy,hy) = \/kg((kxl —kn)/2, (ko —kpp)/2,@,0)

+ \/kg((kxl +kn)/2.(k + ki) /2, 0,0)
= ks kg (A-17)

By setting ¢ = O and (A, h,) = (0,0) in equation A-15, we obtain the
prestack phase-shift migration operator in the midpoint-half-offset do-
main:

PX],)Cz,hl—O hz—OZ t—O)

///// kxlvka’khl?khZ»Z_Ow)

X exp(—i0z)dwdk,, dk,dk;, dk,,, (A-18)
where ® becomes

® = —DSR(x1. %y, hy, hy) + kx1 Ly kx (A-19)

To obtain the response of applying the prestack phase-shift mi-
gration A-18 on a single trace, we adopt the following definition
(Alkhalifah, 2000b):

P(xl’-xz’hlvh27Z:07t)
:P(xl,x2,hlah2aZ:07t)5(xl —x?,erS,hl —h?’hz—hg),

(A-20)

where P(x,,%;,h;,hy,z=0,1) denotes the time-space domain
seismic record at surface and §( ... ) denotes the Dirac delta func-
tion. The midpoint position (x{,x9) and the half-offset (A%, h9)
specify the spatial position of the single trace. The Fourier transform
of the time-space domain wavefield P(xi, xy, hy, hy, z,t) is given
by

P(kyy, ko kpyskpos 2, @)

[ ] ]

X eXp(lr)dldxldedhldhz, (A—Z])
where phase shift 1" is
Y = kxlxl + kxz)Cz + khlhl + kh2h2 — wt. (A-22)

From equations A-20—A-22, we derive the wavefield in frequency-
wavenumber domain:

P(kyr ko knys ks 2= 0, @)
= P(x.x9. 19, 13,z = 0. w)
X exp(ikyx) + ikoxd + ik h) + ikjphd).  (A-23)

By substituting equation A-23 into equation A-18, we obtain the
single-trace response of the 3D prestack phase-shift migration in
midpoint-half-offset domain given by

le,xz,hl—() ]’lz—o Z,I—O)

///// (x}.x3. k). Y,z = 0. )

X exp la)T)da)dkhldkhzdkxldkxz, (A-24)
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where the corresponding traveltime shift 7 is

DSR(x}, Xy, by, hy) Kk,
T = (l 25 1] Z)Z__l(xl_x(l))
w w
k k k
=22 (xy = x9) + LAY + 2 1. (A-25)
[ [ [

Furthermore, from equation A-17 and the relations between the
midpoint-half-offset wavenumber and slowness projections (Alkha-
lifah, 2000b),

(kxl s ka) = (zwpxl ) 2wpx2)

and

(kniskina) = Qopp1. 20p),). (A-20)
The traveltime shift 7' given in equation A-25 becomes

T = (g5 + q4)z = 2ps (x; = x7)
—2pa(xy = X3) + 2py h) + 2piah, (A-27)

where g, = k. /w and q, = k,, /@ are the vertical slowness com-
ponents for source and receiver, respectively.

The traveltime shift 7 given in equation A-27 can also be written
in a vector form:

T=p; (X, —x)+p,- (X, —X), (A-28)

where  p, = (py1 = Pai» Pxo — Pro-—qs) and Py = (P + Ppis
Px2 + Pi2»—q,) denote source and receiver slowness vectors, re-
spectively; and x, = (x) =0, x3 - 13,0), x, = (x?+ A%, x50+
19,0), and x = (xy, x,, z) denote the spatial positions of the source,
receiver, and image point. In terms of the slowness projections,
equation A-28 is identical to equation 4 in the main text.

For a vertically inhomogeneous anisotropic medium, the vertical
slowness components g, and g,, for source and receiver are depth-
dependent in equation A-27. In this case, traveltime shift 7" given in
equation A-27 becomes

7= / “(0,(2) + 4,())dz = 2p 1 (1, — )
0

= 2P0 () = x9) + 2p hY + 2ppahd. (A-29)

APPENDIX B

THE SIGN SELECTIONS FOR P, AND @y, IN
EQUATIONS 31 AND 32

Here, we derive the signs for p, and g, given in equations 31 and
32. From equation 4, the one-way traveltime ¢ for a source or
receiver is given by

t=2zq+ p1y1 + P2y2s (B-1)

where the definitions of (p;, ps,q) and (y;,y,) are shown in the
paragraphs after equations 6 and 8, respectively.

By considering the slowness surface rotation given by equa-
tion 10, we rewrite one-way traveltime B-1 in the form,

t:)~’1P1;1 +)~’2sz;2+5%7 (B-2)

where (¥, y,, Z) denotes the projection of the propagation distance
(1,¥2,2) on the VTI coordinate system,

Vi 0 0 -1\ /n
(ﬁz > = | —sin¢g cos¢p O (yz ) . (B-3)
Z cos¢ sing O z

We further consider the azimuth a of the slowness (p,i, p.», ¢,) in
the VTI medium. We derive the expression for cos a from equa-
tions 21, 25, and 27,

cosa=1Y < . (B-4)

V(1 sin ¢ —y; cos ¢)? + 2

and the expression for sin « from equations 22, 26, and 27,

y; sing — y, cos ¢

sina =171 - , (B-5)
V(i sing =y, cos )2 + 22
where 1" is given by
y_ Yicos ¢+ y, sin ¢ (B-6)

~|y1 cos ¢+ y, sin |
From equations 23, 24, B-4, and B-5, traveltime equation B-2 becomes
= 5)171) + zqw (B'7)

where the horizontal and vertical propagation distances y and 7 are given
by

y =1y cos a+ ¥, sin a

= r\/nsing-ycos g2+ (BB

and
Z =1y cos ¢+ y, sin ¢. (B-9)

It is known that the ray direction and the slowness direction are always
located in the same quadrant for a specified ray ina VTImedium (Tsvan-
kin, 2001, pp. 22-29). It follows that  (Z), and p,, (g, ) always have the
same sign. Hence, we can determine the sign for p, and g, from equa-
tions B-8 and B-9.

APPENDIX C

SHANKS TRANSFORM

Here, we use the Shanks transform to derive equations 40 and 41.
The Shanks transform can be used to improve the convergence rate
of a sequence given by (Bender and Orszag, 1978, pp. 369-375)

A= S aum, (C-1)
m=0

where a,, and ¢ are real valued, and |{| < 1. When n — o0, A, ap-
proaches its limit A . The shanks transform S(A,,) of A,, is defined as
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An+1An—1 - A%l

S(A,) = .
( n) An+1 - 2An + An—l

(C-2)

This transform creates a new sequence S(A,, ), which often converges
more rapidly than the old sequence A,. The sequences S%(A,) =
S[S(A,)] and S*(A,)) = S{S(S(A,))} may be even more rapidly con-
vergent.

To improve the accuracy of the truncated Taylor expansion given
in equation 31, we define

AO = _erO’ (C'3)
Al = _Y[va + Pl (2’7)]’ (C-4)

and
Ay = =Y[pyo + Pui(2n) + pra(2n)?]. (C-5)

Substituting equations C-3—-C-5 into equation C-2 with n = 1, we
obtain

2p3in
Pv = _r<p@0 + — . (C'6)
Pt = 2P0
A similar procedure applied to equation 28 results in the final ex-
pression for ¢q,,

2
24,1 ) . -7

4y = Y(‘]UO +
qv1 — 2‘]172’7

APPENDIX D
THE DERIVATION OF EQUATION 52

Here, we show the derivation of equation 52. For a horizontal
reflector in 3D HTI media, the incident and reflected rays for a
source and receiver pair are symmetric with respect to the z-axis
(see Figure 1). In this case, the midpoint slowness vector
(px1» Px2) becomes zero. From equation 3, we obtain
(Pn1-Pr2) = (Pg1» Py)- Because we will follow the approach in
the section “Slowness approximation at stationary point in 3D hori-
zontal symmetry axis media” to calculate slowness (p,, pp), we
replace (py1, pg) by (p1. p2) for simplicity. It follows that the re-
flection traveltime equation 51 is written as

T =2(pih} + p2h§ + q2), (D-1)

where (py, p2) = (py, cos B, p;, sin f) denotes the horizontal slow-
ness vector for the reflected ray and (49, h9) = (h° cos y, h? sin y)
and 7 = 1o,no+/1 + 217/2 denote the half-offset and the reflec-
tor depth.

Substitution of equation 10 into equation D-1 results in

T =2(puy1 + Pud2 + 4,2), (D-2)

where (3,3,,%) denotes the projection of displacement (A9, h9, 7)
in a VTI medium,

¥ 0 0 -1 hY
<§2>:<—sin¢ cos ¢ 0)(;;3) (D-3)
Z cosp sing O Z

From equations 23 and 24 and equations B-4 and B-5, we obtain

z
Pv1 = p@r (D'4)
1 V/(hy sin ¢ — hy cos $)? + 22

and
hy sin ¢p — h, cos ¢
V/(hy sin ¢ — hy cos $)? + 22

P2 = pvr s (D'5)

where Y is given by

_ hY cos ¢+ hY sin ¢
|hY cos ¢+ A sin |’

(D-6)

In the case of an elliptical HTI medium (7 = 0), the slowness ex-
pressions 40 and 41 become the exact ones,

CUq

po=-r ————— (D-7)
' Uan CZU% + U%mo
and
_ Unmo
Goo = ¥V ——Fm—— (D-8)
09/ €Uy + Vimo
with

hY sin ¢ — h) cos ¢)? + 7°
e VU sing=IBeos ) 22 )
|h{ cos ¢ + h3 sin |

From these operations, traveltime equation D-2 finally becomes

2 2
vnmo 00

Tzz\/(h(f sin ¢p— hY cos¢)2+zz+(h?cos¢—|—h‘2) sin ¢)?

(D-10)

Substitution of the half-offset (A%, h9) = (h° cos y, h° sin y) and
the depth z = 7v,,,/2 into equation D-10 leads to the P-wave re-
flection traveltime in a horizontal reflector in elliptical HTI media:

T(h,y) = \/T2+4(h0)2<5in2(;’_¢)_‘_COSZ(V_(M).

2
Unmo UO

(D-11)
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